Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35677 by abdo imad last updated on 21/May/18

find F(x)=∫_0 ^x  e^(−2t) cos(t+(π/4))dx.

findF(x)=0xe2tcos(t+π4)dx.

Commented by prof Abdo imad last updated on 23/May/18

we have F(x)= Re( ∫_0 ^x  e^(−2t)  e^(i(t+(π/4))) dt)  =Re( ∫_0 ^x  e^(−2t +i(t +(π/4)))  dt)  but  ∫_0 ^x   e^(−2t +i(t+(π/4))) dt = ∫_0 ^x   e^((−2+i)t  +i(π/4))  dt  =e^(i(π/4))   ∫_0 ^x   e^((−2+i)t) dt = e^(i(π/4))   [(1/(−2+i)) e^((−2+i)t) ]_0 ^x   = (e^(i(π/4)) /(−2+i)){  e^((−2+i)x)  −1}  = (((−2−i) e^(i(π/4)) )/5) e^(−2x) { cosx +isinx −1}  =−(1/5){ (2+i)(((√2)/2) +i((√2)/2))}e^(−2x) { cosx +isinx −1}  =−((2(√2))/5){ (2+i)(1+i)}e^(−2x) {cosx +isinx−1}  =−((2(√2))/5)e^(−2x) ( 2 +2i +i−1){ cosx +isinx −1}  =−((2(√2))/5)e^(−2x)  ( 1+3i){ cosx +isinx −1}  = −((2(√2))/5) e^(−2x) { cosx +isinx −1 +3i cosx −3sinx−3i}  F(x)= −((2(√2))/5) e^(−2x) { cosx −3sinx −1} .

wehaveF(x)=Re(0xe2tei(t+π4)dt)=Re(0xe2t+i(t+π4)dt)but0xe2t+i(t+π4)dt=0xe(2+i)t+iπ4dt=eiπ40xe(2+i)tdt=eiπ4[12+ie(2+i)t]0x=eiπ42+i{e(2+i)x1}=(2i)eiπ45e2x{cosx+isinx1}=15{(2+i)(22+i22)}e2x{cosx+isinx1}=225{(2+i)(1+i)}e2x{cosx+isinx1}=225e2x(2+2i+i1){cosx+isinx1}=225e2x(1+3i){cosx+isinx1}=225e2x{cosx+isinx1+3icosx3sinx3i}F(x)=225e2x{cosx3sinx1}.

Commented by prof Abdo imad last updated on 23/May/18

F(x) = ∫_0 ^x  e^(−2t)  cos(t+(π/4))dt .

F(x)=0xe2tcos(t+π4)dt.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com