All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35677 by abdo imad last updated on 21/May/18
findF(x)=∫0xe−2tcos(t+π4)dx.
Commented by prof Abdo imad last updated on 23/May/18
wehaveF(x)=Re(∫0xe−2tei(t+π4)dt)=Re(∫0xe−2t+i(t+π4)dt)but∫0xe−2t+i(t+π4)dt=∫0xe(−2+i)t+iπ4dt=eiπ4∫0xe(−2+i)tdt=eiπ4[1−2+ie(−2+i)t]0x=eiπ4−2+i{e(−2+i)x−1}=(−2−i)eiπ45e−2x{cosx+isinx−1}=−15{(2+i)(22+i22)}e−2x{cosx+isinx−1}=−225{(2+i)(1+i)}e−2x{cosx+isinx−1}=−225e−2x(2+2i+i−1){cosx+isinx−1}=−225e−2x(1+3i){cosx+isinx−1}=−225e−2x{cosx+isinx−1+3icosx−3sinx−3i}F(x)=−225e−2x{cosx−3sinx−1}.
F(x)=∫0xe−2tcos(t+π4)dt.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com