Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31073 by abdo imad last updated on 02/Mar/18

find I= ∫_0 ^(π/2)   ((1−sinθ)/(cosθ))dθ .

findI=0π21sinθcosθdθ.

Commented by prof Abdo imad last updated on 03/Mar/18

the ch.tan((θ/2))=x give  I=∫_0 ^1    ((1 −((2x)/(1+x^2 )))/((1−x^2 )/(1+x^2 ))) ((2dx)/(1+x^2 )) = 2∫_0 ^1   (((x−1)^2 )/((1−x^2 )(1+x^2 )))dx  =2 ∫_0 ^1   ((1−x)/((1+x)(1+x^2 )))dx let decompose the frsction  F(x)= ((1−x)/((1+x)(1+x^2 ))) = (a/(1+x)) +((bx +c)/(1+x^2 ))  a=lim_(x→−1) (x+1)F(x)= (2/2)=1  lim_(x→+∞) xF(x)= 0=a+b ⇒b=−a=−1 ⇒  F(x)= (1/(1+x)) +((−x+c)/(1+x^2 ))  F(0)=1= 1+c⇒c=0 soF(x)= (1/(1+x)) −(x/(1+x^2 ))⇒  I= 2∫_0 ^1   (dx/(1+x))dx  +∫_0 ^1   ((2x)/(1+x^2 ))dxp  = 2[ln∣1+x∣]_0 ^(1  )   −[ln(1+x^2 )]_0 ^1  = 2ln(2) −ln(2)⇒  I=ln(2) .

thech.tan(θ2)=xgiveI=0112x1+x21x21+x22dx1+x2=201(x1)2(1x2)(1+x2)dx=2011x(1+x)(1+x2)dxletdecomposethefrsctionF(x)=1x(1+x)(1+x2)=a1+x+bx+c1+x2a=limx1(x+1)F(x)=22=1limx+xF(x)=0=a+bb=a=1F(x)=11+x+x+c1+x2F(0)=1=1+cc=0soF(x)=11+xx1+x2I=201dx1+xdx+012x1+x2dxp=2[ln1+x]01[ln(1+x2)]01=2ln(2)ln(2)I=ln(2).

Answered by Joel578 last updated on 02/Mar/18

I = lim_(t→(π/2))  (∫_0 ^t sec x − tan x dx)     = lim_(t→(π/2))  [ln (sec x + tan x)cos x]_0 ^t      = lim_(t→(π/2))  ln ((sec t + tan t)cos t) − ln (1 + 0)     = lim_(t→(π/2))  ln ((sec t + tan t)cos t)     = lim_(t→(π/2))  ln (1 + tan t cos t) = ln (1 + lim_(t→(π/2))  tan t cos t)     = ln (1 + lim_(t→(π/2))  ((cos t)/(cot t)))     = ln (1 + lim_(t→(π/2))  ((−sin t)/(−cosec^2  t))) = ln 2

I=limtπ2(0tsecxtanxdx)=limtπ2[ln(secx+tanx)cosx]0t=limtπ2ln((sect+tant)cost)ln(1+0)=limtπ2ln((sect+tant)cost)=limtπ2ln(1+tantcost)=ln(1+limtπ2tantcost)=ln(1+limtπ2costcott)=ln(1+limtπ2sintcosec2t)=ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com