All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31073 by abdo imad last updated on 02/Mar/18
findI=∫0π21−sinθcosθdθ.
Commented by prof Abdo imad last updated on 03/Mar/18
thech.tan(θ2)=xgiveI=∫011−2x1+x21−x21+x22dx1+x2=2∫01(x−1)2(1−x2)(1+x2)dx=2∫011−x(1+x)(1+x2)dxletdecomposethefrsctionF(x)=1−x(1+x)(1+x2)=a1+x+bx+c1+x2a=limx→−1(x+1)F(x)=22=1limx→+∞xF(x)=0=a+b⇒b=−a=−1⇒F(x)=11+x+−x+c1+x2F(0)=1=1+c⇒c=0soF(x)=11+x−x1+x2⇒I=2∫01dx1+xdx+∫012x1+x2dxp=2[ln∣1+x∣]01−[ln(1+x2)]01=2ln(2)−ln(2)⇒I=ln(2).
Answered by Joel578 last updated on 02/Mar/18
I=limt→π2(∫0tsecx−tanxdx)=limt→π2[ln(secx+tanx)cosx]0t=limt→π2ln((sect+tant)cost)−ln(1+0)=limt→π2ln((sect+tant)cost)=limt→π2ln(1+tantcost)=ln(1+limt→π2tantcost)=ln(1+limt→π2costcott)=ln(1+limt→π2−sint−cosec2t)=ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com