Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151246 by mathmax by abdo last updated on 19/Aug/21

find I=∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx

findI=0π4ln(cosx)dxandJ=0π4ln(sinx)dx

Answered by qaz last updated on 19/Aug/21

∫_0 ^(π/4) lnsin xdx  =(1/2)∫_0 ^(π/2) lnsin (x/2)dx  =(1/4)∫_0 ^(π/2) ln((1−cos x)/2)dx  =(1/4)∫_0 ^(π/2) ln(sin xtan (x/2))dx−(1/4)∫_0 ^(π/2) ln2dx  =−(π/8)ln2+(1/4)∫_0 ^(π/2) lntan (x/2)dx−(π/8)ln2  =−(π/4)ln2+(1/2)∫_0 ^(π/4) lntan xdx  =−(π/4)ln2+(1/2)∫_0 ^1 ((lnx)/(1+x^2 ))dx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (((−1)^(n+1) )/((2n+1)^2 ))  =−(π/4)ln2−(1/2)G  −−−−−−−−−−−−−−−  ∫_0 ^(π/4) lncos xdx+∫_0 ^(π/4) lnsin xdx  =∫_0 ^(π/4) ln((1/2)sin 2x)dx  =∫_0 ^(π/4) ln(1/2)dx+(1/2)∫_0 ^(π/2) lnsin xdx  =−(π/2)ln2  ⇒∫_0 ^(π/4) lncos xdx=−(π/2)ln2−(−(π/4)ln2−(1/2)G)=(1/2)G−(π/4)ln2

0π/4lnsinxdx=120π/2lnsinx2dx=140π/2ln1cosx2dx=140π/2ln(sinxtanx2)dx140π/2ln2dx=π8ln2+140π/2lntanx2dxπ8ln2=π4ln2+120π/4lntanxdx=π4ln2+1201lnx1+x2dx=π4ln2+12n=0(1)n01x2nlnxdx=π4ln2+12n=0(1)n+1(2n+1)2=π4ln212G0π/4lncosxdx+0π/4lnsinxdx=0π/4ln(12sin2x)dx=0π/4ln12dx+120π/2lnsinxdx=π2ln20π/4lncosxdx=π2ln2(π4ln212G)=12Gπ4ln2

Commented by peter frank last updated on 19/Aug/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com