All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27186 by abdo imad last updated on 02/Jan/18
findI=∫0πdxcosx+2sinx.
Commented by abdo imad last updated on 04/Jan/18
wedothechangementtan(x2)=tI=∫0∞2dt1+t21−t21+t2+4t1+t2=∫0∞2dt−t2+4t+1=−2∫0∞dtt2−4t−1=−2∫0∞dtt2−4t+4−5=−2∫0∞dt(t−2)2−5=−2∫0∞dt(t−2+5)(t−2−5)=15∫0∞(1t−2+5−1t−2−5)=15[ln/t−2+5t−2−5/]0∝=15(−ln/−2+5−2−5/)=15ln(2+5−2+5).
Answered by mrW1 last updated on 03/Jan/18
I=∫0πdxcosx+2sinx=15∫0πdx15cosx+25sinx=15∫0πdxsinαcosx+cosαsinx=15∫0πdxsin(x+α)......=15ln(9+45)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com