Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42798 by maxmathsup by imad last updated on 02/Sep/18

find I_n = ∫_0 ^1  x^n (√(1−x^2 ))dx

findIn=01xn1x2dx

Commented by maxmathsup by imad last updated on 05/Sep/18

changement x=sint give I_n = ∫_0 ^(π/2)  sin^n t cos^2 t dt  =∫_0 ^(π/2)   sin^n t(1−sin^2 t)dt = ∫_0 ^(π/2) sin^n t dt −∫_0 ^(π/2)   sin^(n+2) dt =w_n −w_(n+2)   let find w_n = ∫_0 ^(π/2)  sin^n t dt  we have w_n =∫_0 ^(π/2)  sin^(n−2) t(1−cos^2 t)dt  =w_(n−2)  −∫_0 ^(π/2)  cost( cost sin^(n−2) t)dt  by parts u=cost and v^′ =cost sin^(n−2) t⇒  ∫_0 ^(π/2)  cost (cost sin^(n−2) t)dt =[(1/(n−1)) cost sin^(n−1) t]_0 ^(π/2)  −∫_0 ^(π/2)  ((−sint)/(n−1)) sin^(n−1) tdt  = ∫_0 ^(π/2)  ((sin^n t)/(n−1)) dt =(1/(n−1)) w_n  ⇒w_n =w_(n−2) −(1/(n−1)) w_n  ⇒(1+(1/(n−1)))w_n =w_(n−2)  ⇒  (n/(n−1))w_n  =w_(n−2)  ⇒w_n =((n−1)/n)w_(n−2) ⇒w_(2n) =((2n−1)/(2n))w_(2n−2)  and  w_(2n+1)  =((2n)/(2n+1)) w_(2n−1)   let find w_(2n)   Π_(k=1) ^n  w_(2k)  =Π_(k=1) ^n   ((2k−1)/(2k)) w_(2k−2)  ⇒w_2 .w_4 .....w_(2n) =((1.3.5.....(2n−1))/((2)(4)....(2n)))w_0 w_2 ...w_(2n−2) ⇒  w_(2n) = ((1.3.5...(2n−1))/(2^n (n!))) w_0 = (((2n)!)/(2^(2n) (n!)^2 )) (π/2)   let find w_(2n+1)   I_(2n) =w_(2n) −w_(2n+2) = (((2n)!)/(2^(2n) (n!)^2 )) (π/2) − (((2n+4)!)/(2^(2n+4)  {(n+2)!}^2 )) (π/2)  let find w_(2n+1)   we have w_(2n+1) =((2n)/(2n+1)) w_(2n−1)  ⇒Π_(k=1) ^n  w_(2k+1)  =Π_(k=1) ^n  ((2k)/(2k+1)) Π_(k=1) ^n w_(2k−1)  ⇒  w_3 .w_5 .....w_(2n+1) =((2^n (n!))/(3.5....(2n+1))) w_1 .w_3 ....w_(2n−1) ⇒  w_(2n+1) = ((2^(2n) (n!)^2 )/((2n+1)!)) w_1    but w_1 =1 ⇒ I_(2n−1) =w_(2n−1)  −w_(2n+1)   =((2^(2n−2) {(n−1)!}^2 )/((2n−1)!)) −((2^(2n) (n!)^2 )/((2n+1)!)) .

changementx=sintgiveIn=0π2sinntcos2tdt=0π2sinnt(1sin2t)dt=0π2sinntdt0π2sinn+2dt=wnwn+2letfindwn=0π2sinntdtwehavewn=0π2sinn2t(1cos2t)dt=wn20π2cost(costsinn2t)dtbypartsu=costandv=costsinn2t0π2cost(costsinn2t)dt=[1n1costsinn1t]0π20π2sintn1sinn1tdt=0π2sinntn1dt=1n1wnwn=wn21n1wn(1+1n1)wn=wn2nn1wn=wn2wn=n1nwn2w2n=2n12nw2n2andw2n+1=2n2n+1w2n1letfindw2nk=1nw2k=k=1n2k12kw2k2w2.w4.....w2n=1.3.5.....(2n1)(2)(4)....(2n)w0w2...w2n2w2n=1.3.5...(2n1)2n(n!)w0=(2n)!22n(n!)2π2letfindw2n+1I2n=w2nw2n+2=(2n)!22n(n!)2π2(2n+4)!22n+4{(n+2)!}2π2letfindw2n+1wehavew2n+1=2n2n+1w2n1k=1nw2k+1=k=1n2k2k+1k=1nw2k1w3.w5.....w2n+1=2n(n!)3.5....(2n+1)w1.w3....w2n1w2n+1=22n(n!)2(2n+1)!w1butw1=1I2n1=w2n1w2n+1=22n2{(n1)!}2(2n1)!22n(n!)2(2n+1)!.

Commented by maxmathsup by imad last updated on 05/Sep/18

another way changement  (√(1−x^2 ))=t give x^2  =1−t^2  ⇒dx =−dt ⇒  I_n = ∫_0 ^1  (1−t^2 )^(n/2)   dt  ⇒ I_(2n)  = ∫_0 ^1 (1−t^2 )^n dt =∫_0 ^1   Σ_(k=0) ^n  C_n ^k  (−1)^k  t^(2k) dt  =Σ_(k=0) ^n  (−1)^k  C_n ^k  (1/(2k+1))   =Σ_(k=0) ^n   (((−1)^k )/(2k+1)) C_n ^k   I_(2n+1) = ∫_0 ^1  (1−t^2 )^(n+(1/2)) dt = ∫_0 ^1 (1−t^2 )^n (√(1−t^2 ))dt  = ∫_0 ^1 (√(1−t^2 ))(Σ_(k=0) ^n  C_n ^k  (−1)^k  t^(2k) )dt  = Σ_(k=0) ^n  (−1)^k  C_n ^k   ∫_0 ^1  t^(2k) (√(1−t^2 ))dt  then we calculate w_k =∫_0 ^1  t^(2k) (√(1−t^2 ))dt  by recurrence....

anotherwaychangement1x2=tgivex2=1t2dx=dtIn=01(1t2)n2dtI2n=01(1t2)ndt=01k=0nCnk(1)kt2kdt=k=0n(1)kCnk12k+1=k=0n(1)k2k+1CnkI2n+1=01(1t2)n+12dt=01(1t2)n1t2dt=011t2(k=0nCnk(1)kt2k)dt=k=0n(1)kCnk01t2k1t2dtthenwecalculatewk=01t2k1t2dtbyrecurrence....

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18

x=sinα  dx=cosα dα  ∫_0 ^(Π/2) sin^n α cos^2 α dα  using gamma beta function  ∫_0 ^(Π/2) sin^(2p−1) αcos^(2q−1) ∝ dα  =((⌈p ⌈q)/(2⌈(p+q)))  2p−1=n  p=((n+1)/2)   2q−1=2   q=(3/2)  ∫_0 ^(Π/2) sin^(2×((n+1)/2)−1) α×cos^(2×(3/2)−1) α dα  =((⌈(((n+1)/2))×⌈((3/2)))/(2⌈(((n+4)/2))))  pls check

x=sinαdx=cosαdα0Π2sinnαcos2αdαusinggammabetafunction0Π2sin2p1αcos2q1dα=pq2(p+q)2p1=np=n+122q1=2q=320Π2sin2×n+121α×cos2×321αdα=(n+12)×(32)2(n+42)plscheck

Terms of Service

Privacy Policy

Contact: info@tinkutara.com