All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27999 by abdo imad last updated on 18/Jan/18
findIn,m=∫01xn(1−x)mdxwith(n,m)∈N★2andcalculate∑n=0∝In,m.
Commented by abdo imad last updated on 22/Jan/18
duetouniformconvergencewehave∑n=0+∞In,m=∫01(1−x)m(∑n=0∝xn)=∫01(1−x)m1−xdx=∫01(1−x)m−1dx=[−1m(1−x)m]01=1mform⩾1.letcalculateIn,mbypartswehaveIn,m=[−1m+1xn(1−x)m+1]01+1m+1∫01nxn−1(1−x)m+1dx=nm+1∫01xn−1(1−x)m+1dxIn,m=nm+1In−1,m+1=nm+1n−1m+2In−2,m+2=n(n−1)....(n−p+1)(m+1)(m+2)...(m+p)In−p,m+p=n!(m+1)(m+2)....(m+n)I0,m+nbutI0,m+n=∫01(1−x)m+ndx=[−1m+n+1(1−x)m+n+1]01=1m+n+1soIn,m=n!(m+1)(m+2)...(m+n+1)In,m=(n!)(m!)(m+n+1)!.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com