Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 100650 by bobhans last updated on 28/Jun/20

find all 2x2 matrices A such  that A^3 −3A^2  =  (((−2     −2)),((−2      −2)) )

findall2x2matricesAsuchthatA33A2=(2222)

Answered by bramlex last updated on 28/Jun/20

let A =  (((a     b)),((c     d)) )  A^2 (A−3I) =  (((−2     −2)),((−2      −2)) )  (det(A))^2  det(A−3I) = det  (((−2    −2)),((−2    −2)) ) = 0  case 1  det (A)=0 ⇒p(λ) = det(λI−A)=0   determinant (((λ−a     −b)),((−c       λ−d)))= λ^2 −(a+d)λ+ad−bc   λ^2 −TR(A)λ+det(A) = 0  ⇒λ^2 −TR(A)λ=0 ; A^2 = TR(A).A  A^3 = A(TR(A))= (TR(A))^2 A  ⇒A^3 −3A= (((−2    −2)),((−2     −2)) )  TR(A)^3 −3(TR(A))^2 +4 = 0  TR(A) = 2 or TR(A) = −1  case 1a  TR(A)=2 ⇒ −2A =  (((−2   −2)),((−2    −2)) )  A =  (((1    1)),((1    1)) ) . TR(A) = −1   4A =  (((−2    −2)),((−2      −2)) ) ⇒A= (((−(1/2)    −(1/2))),((−(1/2)     −(1/2))) )  case 2  det(A−3I)=0  det(A−2I)^2 (A+I)=0  case2a  det(A−2I) = 0 ⇒p(λ)=λ^2 −5λ+6  A^2 =5A−6I ⇒A^3 −3A^2 =(19A−30I)−3(5A−6I)  = 4A−12I =  (((−2    −2)),((−2     −2)) )  4A =  (((10   −2)),((−2   10)) ) ⇒A= ((((5/2)   −(1/2))),((−(1/2)    (5/2))) )  case2b  det(A+I)=0 ⇒p(λ)=λ^2 −2λ−3  A^2 −2A−3I=0; A^2 =2A+3I  A^3 −3A^2 =7A+6I−3(2A+3I)=A−3I  ⇒A−3I =  (((−2    −2)),((−2     −2)) )  A =  (((1    −2)),((−2    1)) )  ∴ A =  (((1   1)),((1    1)) ) ;  (((−(1/2)     −(1/2))),((−(1/2)      −(1/2))) )  ;  ((((5/2)      −(1/2))),((−(1/2)     (5/2))) ) ;  (((  1     −2)),((−2      1)) )

letA=(abcd)A2(A3I)=(2222)(det(A))2det(A3I)=det(2222)=0case1det(A)=0p(λ)=det(λIA)=0|λabcλd|=λ2(a+d)λ+adbcλ2TR(A)λ+det(A)=0λ2TR(A)λ=0;A2=TR(A).AA3=A(TR(A))=(TR(A))2AA33A=(2222)TR(A)33(TR(A))2+4=0TR(A)=2orTR(A)=1case1aTR(A)=22A=(2222)A=(1111).TR(A)=14A=(2222)A=(12121212)case2det(A3I)=0det(A2I)2(A+I)=0case2adet(A2I)=0p(λ)=λ25λ+6A2=5A6IA33A2=(19A30I)3(5A6I)=4A12I=(2222)4A=(102210)A=(52121252)case2bdet(A+I)=0p(λ)=λ22λ3A22A3I=0;A2=2A+3IA33A2=7A+6I3(2A+3I)=A3IA3I=(2222)A=(1221)A=(1111);(12121212);(52121252);(1221)

Commented by bobhans last updated on 28/Jun/20

great===

great===

Terms of Service

Privacy Policy

Contact: info@tinkutara.com