Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 88414 by abdomathmax last updated on 10/Apr/20

find approcimstive value of   ∫_(π/3) ^(π/2)  (x/(sinx))dx

findapprocimstivevalueofπ3π2xsinxdx

Commented by mathmax by abdo last updated on 12/Apr/20

we have sinx =x−(x^3 /6) +....⇒x−(x^3 /6)≤sinx≤x  ∀ x∈[(π/3),(π/2)] ⇒  (1/x)≤(1/(sinx))≤(1/(x−(x^3 /6))) ⇒ 1≤(x/(sinx))≤(1/(1−(x^2 /6))) ⇒  (π/2)−(π/3)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤ 6∫_(π/3) ^(π/2)  (dx/(6−x^2 ))  we have  ∫_(π/3) ^(π/2)  (dx/(6−x^2 )) =(1/(2(√6)))∫_(π/3) ^(π/2) ((1/((√6)−x))+(1/((√6)+x)))dx  =(1/(2(√6)))[ln∣(((√6)+x)/((√6)−x))∣]_(π/3) ^(π/2)  =(1/(2(√6))){ ln((((√6)+(π/2))/((√6)−(π/2))))−ln((((√6)+(π/3))/((√6)−(π/3))))}  =(1/(2(√6))){ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} ⇒  (π/6)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤((√6)/2){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} we can take  v_0 =(π/2) +((√6)/4){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} as a approximste value

wehavesinx=xx36+....xx36sinxxx[π3,π2]1x1sinx1xx361xsinx11x26π2π3π3π2xsinxdx6π3π2dx6x2wehaveπ3π2dx6x2=126π3π2(16x+16+x)dx=126[ln6+x6x]π3π2=126{ln(6+π26π2)ln(6+π36π3)}=126{ln(26+π26π)ln(36+π36π)}π6π3π2xsinxdx62{ln(26+π26π)ln(36+π36π)}wecantakev0=π2+64{ln(26+π26π)ln(36+π36π)}asaapproximstevalue

Commented by mathmax by abdo last updated on 12/Apr/20

v_0 =(π/(12)) +((√6)/4){.....}

v0=π12+64{.....}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com