All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 88414 by abdomathmax last updated on 10/Apr/20
findapprocimstivevalueof∫π3π2xsinxdx
Commented by mathmax by abdo last updated on 12/Apr/20
wehavesinx=x−x36+....⇒x−x36⩽sinx⩽x∀x∈[π3,π2]⇒1x⩽1sinx⩽1x−x36⇒1⩽xsinx⩽11−x26⇒π2−π3⩽∫π3π2xsinxdx⩽6∫π3π2dx6−x2wehave∫π3π2dx6−x2=126∫π3π2(16−x+16+x)dx=126[ln∣6+x6−x∣]π3π2=126{ln(6+π26−π2)−ln(6+π36−π3)}=126{ln(26+π26−π)−ln(36+π36−π)}⇒π6⩽∫π3π2xsinxdx⩽62{ln(26+π26−π)−ln(36+π36−π)}wecantakev0=π2+64{ln(26+π26−π)−ln(36+π36−π)}asaapproximstevalue
v0=π12+64{.....}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com