All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 90040 by abdomathmax last updated on 21/Apr/20
find∫−∞+∞ch(acosx+bsinx)x2−x+1dxaandbrealsgiven
Commented by mathmax by abdo last updated on 22/Apr/20
A=∫−∞+∞ch(acosx+bsinx)x2−x+1dxletφ(z)=ch(acosz+bsinz)z2−z+1polesofφ?z2−z+1=0→Δ=−3⇒z1=1+i32=eiπ3z2=1−i32=e−iπ3⇒φ(z)=ch(acosx+bsinx)(z−eiπ3)(z−e−iπ3)residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,eiπ3)=2iπ×ch(acos(eiπ3)+bsin(eiπ3))2isin(π3)=π×23ch(acos(eiπ3)+bsin(eiπ3))cos(eiπ3)=cos(12+i32)=ei(12+i32)+e−i(12+i32)2=12{e−32(cos(12)+isin(12))+e32(cos(12)−isin(12))1}=12{cos(12)(e32+e−32)−isin(12)(e32−e−32)}=cos(12)ch(32)−sin(12)sh(32)...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com