Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33987 by abdo imad last updated on 28/Apr/18

find ∫_(−∞) ^(+∞)    ((cos(αx))/((1+x^2 )^3 )) dx with α≥0 .

find+cos(αx)(1+x2)3dxwithα0.

Commented by abdo mathsup 649 cc last updated on 02/May/18

let put f(α) = ∫_(−∞) ^(+∞)   ((cos(αx))/((1+x^2 )^3 ))dx  f(α) = Re( ∫_(−∞) ^(+∞)   (e^(iαx) /((1+x^2 )^3 ))dx) let consider the  compolex function ϕ(z)= (e^(iαz) /((1+z^2 )^3 )) the poles of  ϕ are i and −i(triples) so  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)  (1/((3−1)!))((z−i)^3  ϕ(z))^(′′)   =lim_(z→i)  (1/2)(  (e^(iαz) /((z+i)^3 )))^(′′)    but  ( (e^(iαz) /((z+i)^3 )))^′  =  ((iα e^(iα2) (z+i)^3  −3(z+i)^2  e^(iαz) )/((z+i)^6 ))  = ((iα e^(iαz) (z+i) −3 e^(iαz) )/((z+i)^4 ))  ( (e^(iαz) /((z+i)^3 )))^(′′)  =  (((−α^2  e^(iαz) (z+i) +iα e^(iαz)  −3iα e^(iαz) )(z+i)^4  −4(z+i)^3 ( iα e^(iαz) (z+i)−3 e^(iαz) ))/((z+i)^8 ))  =(((−α^2  e^(iαz) (z+i) −2iα e^(iαz) )(z+i) −4(iα e^(iαz) (z+i) −3 e^(iαz) ))/((z+i)^5 ))  Res(ϕ^� ,i) =((( −2i α^2  e^(−iα)  −2iα e^(−α) )(2i) −4(−2α e^(−α)  −3 e^(−α) ))/((2i)^5 ))  ....be continued...

letputf(α)=+cos(αx)(1+x2)3dxf(α)=Re(+eiαx(1+x2)3dx)letconsiderthecompolexfunctionφ(z)=eiαz(1+z2)3thepolesofφareiandi(triples)so+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!((zi)3φ(z))=limzi12(eiαz(z+i)3)but(eiαz(z+i)3)=iαeiα2(z+i)33(z+i)2eiαz(z+i)6=iαeiαz(z+i)3eiαz(z+i)4(eiαz(z+i)3)=(α2eiαz(z+i)+iαeiαz3iαeiαz)(z+i)44(z+i)3(iαeiαz(z+i)3eiαz)(z+i)8=(α2eiαz(z+i)2iαeiαz)(z+i)4(iαeiαz(z+i)3eiαz)(z+i)5Res(φ¯,i)=(2iα2eiα2iαeα)(2i)4(2αeα3eα)(2i)5....becontinued...

Commented by abdo mathsup 649 cc last updated on 03/May/18

Res(ϕ,i) =((4α^2  e^(−iα)   +4α e^(−α)  +8α e^(−α)  +12 e^(−α) )/(32 i))  = ((4α^2  e^(−iα)  + 24 e^(−α) )/(32i))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ  ((4α^2  e^(−iα)  +24 e^(−α) )/(32i))  =((8π)/(32))((α^2  e^(−iα)  +6 e^(−α) )/1) =(π/4)( α^2 cos(α) −iα^2 sinα +6 e^(−α) )  ⇒ f(α) = (π/4)( α^2  cosα  +6 e^(−α) ) .

Res(φ,i)=4α2eiα+4αeα+8αeα+12eα32i=4α2eiα+24eα32i+φ(z)dz=2iπ4α2eiα+24eα32i=8π32α2eiα+6eα1=π4(α2cos(α)iα2sinα+6eα)f(α)=π4(α2cosα+6eα).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com