All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33987 by abdo imad last updated on 28/Apr/18
find∫−∞+∞cos(αx)(1+x2)3dxwithα⩾0.
Commented by abdo mathsup 649 cc last updated on 02/May/18
letputf(α)=∫−∞+∞cos(αx)(1+x2)3dxf(α)=Re(∫−∞+∞eiαx(1+x2)3dx)letconsiderthecompolexfunctionφ(z)=eiαz(1+z2)3thepolesofφareiand−i(triples)so∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(3−1)!((z−i)3φ(z))″=limz→i12(eiαz(z+i)3)″but(eiαz(z+i)3)′=iαeiα2(z+i)3−3(z+i)2eiαz(z+i)6=iαeiαz(z+i)−3eiαz(z+i)4(eiαz(z+i)3)″=(−α2eiαz(z+i)+iαeiαz−3iαeiαz)(z+i)4−4(z+i)3(iαeiαz(z+i)−3eiαz)(z+i)8=(−α2eiαz(z+i)−2iαeiαz)(z+i)−4(iαeiαz(z+i)−3eiαz)(z+i)5Res(φ¯,i)=(−2iα2e−iα−2iαe−α)(2i)−4(−2αe−α−3e−α)(2i)5....becontinued...
Commented by abdo mathsup 649 cc last updated on 03/May/18
Res(φ,i)=4α2e−iα+4αe−α+8αe−α+12e−α32i=4α2e−iα+24e−α32i∫−∞+∞φ(z)dz=2iπ4α2e−iα+24e−α32i=8π32α2e−iα+6e−α1=π4(α2cos(α)−iα2sinα+6e−α)⇒f(α)=π4(α2cosα+6e−α).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com