All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26397 by abdo imad last updated on 25/Dec/17
find∫dxx1+x2andcalculate∫13dxx1+x2
Commented by abdo imad last updated on 26/Dec/17
letusethechangementx=tanθ∫dxx1+x2=∫(1+tan2θ)dθtanθ1+tan2dθ=∫1+tan2θtanθdθ=∫1cosθtanθdθ=∫dθsinθandbythechangementtan(θ/2)=tI=∫2dt1+t2(2t1+t2)−1=∫dt/t=ln/t/=ln/tan(arctanx2)/ln⇒∫dxx1+x2=ln/tan(arctanx2)/+k∫13dxx1+x2=ln/tan(2−1arctan3)/−ln/tan(2−1arctan1)/==ln/tan(arctan32)/−ln/tan(π8)/.
Answered by $@ty@m last updated on 25/Dec/17
x=tanydx=sec2ydyI=∫sec2ydytany.secy=∫cosecydy=ln∣cosecy−coty∣+C=ln∣cosec(tan−1x)−cot(tan−1x)∣+C
Anothermethod:Letx=1tdx=−1t2dt∫−1t2dt1t1+1t2∫−1t2dt1t2t2+1=∫−dt1+t2=−ln∣t+1+t2∣+C=−ln∣1x+1+1x2∣+C=−ln∣1+1+x2x∣+C=ln∣x1+1+x2∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com