All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50683 by maxmathsup by imad last updated on 18/Dec/18
findf(λ)=∫0∞arctan(λx)1+λx2dxwithλ>0
Commented by Abdo msup. last updated on 21/Dec/18
changementλx=tgivef(λ)=1λ∫0∞arctan(λtλ)1+t2dt=1λ∫0∞arctan(λt)1+t2dtand∫0∞arctan(λt)1+t2dt=W(λ)withW(x)=∫0∞arctan(xt)1+t2dt(x>0)letdetermineW(x)W′(x)=∫0∞t(1+x2t2)(1+t2)dt=xt=u∫0∞ux(1+u2)(1+u2x2)dux=∫0∞udu(u2+x2)(u2+1)letdevomposeF(u)=u(u2+x2)(u2+1)F(u)=au+bu2+x2+cu+du2+1F(−u)=−F(u)⇒−au+bu2+x2+−cu+du2+1=−au−bu2+x2+−cu−du2+1⇒b=d=0⇒F(u)=auu2+x2+cuu2+1limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=auu2+x2−auu2+1F(1)=12(x2+1)=ax2+1−a2⇒12=a−a(x2+1)2⇒1=2a−(x2+1)a=(1−x2)a⇒a=11−x2(wesupposex2≠1)⇒F(u)=11−x2{uu2+x2−uu2+1}⇒∫0∞F(u)du=11−x2(∫0∞uduu2+x2−∫0∞u1+u2du)but∫0∞udu1+u2du=12ln(1+u2)also∫0∞uduu2+x2du=u=xα∫0∞xαx2α2+x2xdα=∫0∞αdαα2+1⇒∫0∞F(u)du=0⇒W′(x)=0⇒W(x)=c=W(1)=∫0∞arctant1+t2dtchangementt=1ugiveW(1)=−∫0∞π2−arctanu1+1u2−duu2=∫0∞π2−arctanuu2+1du=π2∫0∞du1+u2−∫0∞arctanu1+u2du=π24−W(1)⇒2W(1)=π24⇒W(1)=π28⇒f(λ)=π28λ.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com