Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50683 by maxmathsup by imad last updated on 18/Dec/18

find f(λ) =∫_0 ^∞    ((arctan(λx))/(1+λx^2 ))dx  with λ>0

findf(λ)=0arctan(λx)1+λx2dxwithλ>0

Commented by Abdo msup. last updated on 21/Dec/18

changement (√λ)x=t give  f(λ)=(1/(√λ))∫_0 ^∞   ((arctan(λ(t/(√λ))))/(1+t^2 ))dt=(1/(√λ))∫_0 ^∞   ((arctan((√λ)t))/(1+t^2 ))dt  and ∫_0 ^∞    ((arctan((√λ)t))/(1+t^2 ))dt =W((√λ)) with  W(x)=∫_0 ^∞   ((arctan(xt))/(1+t^2 ))dt  (x>0) let determine W(x)  W^′ (x)=∫_0 ^∞    (t/((1+x^2 t^2 )(1+t^2 )))dt  =_(xt =u)     ∫_0 ^∞     (u/(x(1+u^2 )(1+(u^2 /x^2 )))) (du/x)  =∫_0 ^∞     ((udu)/((u^2  +x^2 )(u^2  +1))) let devompose  F(u)=(u/((u^2  +x^2 )(u^2  +1)))  F(u)=((au+b)/(u^2  +x^2 )) +((cu +d)/(u^2  +1))  F(−u)=−F(u) ⇒((−au+b)/(u^2  +x^2 )) +((−cu +d)/(u^2  +1))  =((−au−b)/(u^2  +x^2 )) +((−cu−d)/(u^(2 ) +1)) ⇒b=d=0 ⇒  F(u)=((au)/(u^2  +x^2 )) +((cu)/(u^2  +1))  lim_(u→+∞) uF(u)=0=a+c ⇒c=−a ⇒  F(u)=((au)/(u^2  +x^2 )) −((au)/(u^2  +1))  F(1)=(1/(2(x^2  +1))) =(a/(x^2  +1)) −(a/2) ⇒  (1/2) =a−((a(x^2  +1))/2) ⇒1=2a −(x^2  +1)a =(1−x^2 )a ⇒  a=(1/(1−x^2 ))   (we suppose x^2 ≠1) ⇒  F(u) =(1/(1−x^2 )){ (u/(u^2  +x^2 )) −(u/(u^2  +1))} ⇒  ∫_0 ^∞  F(u)du =(1/(1−x^2 ))( ∫_0 ^∞   ((udu)/(u^2  +x^2 ))−∫_0 ^∞   (u/(1+u^2 ))du) but  ∫_0 ^∞    ((udu)/(1+u^2 ))du = (1/2)ln(1+u^2 ) also  ∫_0 ^∞    ((udu)/(u^2  +x^2 )) du =_(u=xα)   ∫_0 ^∞   ((xα )/(x^2 α^2  +x^2 )) xdα  =∫_0 ^∞     ((αdα)/(α^2  +1)) ⇒∫_0 ^∞  F(u)du =0 ⇒W^′ (x)=0 ⇒  W(x)=c =W(1) = ∫_0 ^∞  ((arctant)/(1+t^2 )) dt changement  t=(1/u)  give  W(1)=−∫_0 ^∞    (((π/2)−arctanu)/(1+(1/u^2 ))) ((−du)/u^2 )  =∫_0 ^∞     (((π/2)−arctanu)/(u^2  +1)) du  =(π/2)∫_0 ^∞  (du/(1+u^2 )) −∫_0 ^∞    ((arctanu)/(1+u^2 )) du =(π^2 /4) −W(1) ⇒  2W(1)=(π^2 /4) ⇒W(1)=(π^2 /8) ⇒f(λ)=(π^2 /(8(√λ))) .

changementλx=tgivef(λ)=1λ0arctan(λtλ)1+t2dt=1λ0arctan(λt)1+t2dtand0arctan(λt)1+t2dt=W(λ)withW(x)=0arctan(xt)1+t2dt(x>0)letdetermineW(x)W(x)=0t(1+x2t2)(1+t2)dt=xt=u0ux(1+u2)(1+u2x2)dux=0udu(u2+x2)(u2+1)letdevomposeF(u)=u(u2+x2)(u2+1)F(u)=au+bu2+x2+cu+du2+1F(u)=F(u)au+bu2+x2+cu+du2+1=aubu2+x2+cudu2+1b=d=0F(u)=auu2+x2+cuu2+1limu+uF(u)=0=a+cc=aF(u)=auu2+x2auu2+1F(1)=12(x2+1)=ax2+1a212=aa(x2+1)21=2a(x2+1)a=(1x2)aa=11x2(wesupposex21)F(u)=11x2{uu2+x2uu2+1}0F(u)du=11x2(0uduu2+x20u1+u2du)but0udu1+u2du=12ln(1+u2)also0uduu2+x2du=u=xα0xαx2α2+x2xdα=0αdαα2+10F(u)du=0W(x)=0W(x)=c=W(1)=0arctant1+t2dtchangementt=1ugiveW(1)=0π2arctanu1+1u2duu2=0π2arctanuu2+1du=π20du1+u20arctanu1+u2du=π24W(1)2W(1)=π24W(1)=π28f(λ)=π28λ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com