Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68040 by mathmax by abdo last updated on 03/Sep/19

find f(a) =∫_1 ^2 arctan(x+(a/x))dx  and  calculate f^′ (a) at form of integral

findf(a)=12arctan(x+ax)dxandcalculatef(a)atformofintegral

Commented by mathmax by abdo last updated on 04/Sep/19

f(a) =∫_1 ^2  arctan(x+(a/x))dx  by parts   f(a) =[x arctan(x+(a/x))]_1 ^2 −∫_1 ^2 x((1−(a/x^2 ))/(1+(x+(a/x))^2 ))dx  =2 arctan(2+(a/2))−arctan(1+a)−∫_1 ^2   ((x(x^2 −a))/(x^2  +(x^2  +a)^2 ))dx  let J =∫_1 ^2  ((x^3 −ax)/(x^2  +(x^2  +a)^2 ))dx ⇒ J =∫_1 ^2  ((x^3 −ax)/(x^2  +x^4  +2ax^2  +a^2 ))dx  =∫_1 ^2   ((x^3 −ax)/(x^4  +(2a+1)x^2  +a^2 ))  x^4  +(2a+1)x^2  +a^2 =0 ⇒t^2  +(2a+1)t +a^2 =0  with t=x^2   Δ =(2a+1)^2 −4a^2  =4a^2 +4a +1−4a^2 =4a+1  case 1  if 4a+1≥0 ⇒ t_1 =((−(2a+1)+(√(4a+1)))/2)  and t_2 =((−(2a+1)−(√(4a+1)))/2) ⇒x^4  +(2a+1)x^2 +a^2   =(t−t_1 )(t−t_2 ) (x^2 −t_1 )(x^2 −t_2 ) ⇒  J =(1/(t_1 −t_2 ))∫_1 ^2  (x^3 −ax){(1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))}dx  =(1/(√(4a+1))){ ∫_1 ^2  ((x^3 −ax)/(x^2 −t_1 ))dx −∫_1 ^2  ((x^3 −ax)/(x^2 −t_2 ))dx} we have  ∫_1 ^2  ((x^3 −ax)/(x^2 −t_1 ))dx =∫_1 ^2  ((x(x^2 −t_1 )+xt_1 −ax)/(x^2 −t_1 ))dx  =[(x^2 /2)]_1 ^2   +(t_1 −a) ∫_1 ^2    ((xdx)/(x^2 −t_1 )) =2−(1/2) +((t_1 −a)/2)[ln∣x^2 −t_1 ∣]_1 ^2   =(3/2) +((t_1 −a)/2){ln∣((4−t_1 )/(1−t_1 ))∣} also we get  ∫_1 ^2  ((x^3 −ax)/(x^2 −t_2 )) dx =(3/2) +((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣ ⇒  J =(1/(√(4a+1))){(((t_1 −a))/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣} ⇒  f(a) =2arctan(2+(a/2))−arctan(1+a)  −(1/(√(4a+1))){ ((t_1 −a)/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣}.  rest to calculate f(a) if 4a+1<0 ??....becontinued...

f(a)=12arctan(x+ax)dxbypartsf(a)=[xarctan(x+ax)]1212x1ax21+(x+ax)2dx=2arctan(2+a2)arctan(1+a)12x(x2a)x2+(x2+a)2dxletJ=12x3axx2+(x2+a)2dxJ=12x3axx2+x4+2ax2+a2dx=12x3axx4+(2a+1)x2+a2x4+(2a+1)x2+a2=0t2+(2a+1)t+a2=0witht=x2Δ=(2a+1)24a2=4a2+4a+14a2=4a+1case1if4a+10t1=(2a+1)+4a+12andt2=(2a+1)4a+12x4+(2a+1)x2+a2=(tt1)(tt2)(x2t1)(x2t2)J=1t1t212(x3ax){1x2t11x2t2}dx=14a+1{12x3axx2t1dx12x3axx2t2dx}wehave12x3axx2t1dx=12x(x2t1)+xt1axx2t1dx=[x22]12+(t1a)12xdxx2t1=212+t1a2[lnx2t1]12=32+t1a2{ln4t11t1}alsoweget12x3axx2t2dx=32+t2a2ln4t21t2J=14a+1{(t1a)2ln4t11t1t2a2ln4t21t2}f(a)=2arctan(2+a2)arctan(1+a)14a+1{t1a2ln4t11t1t2a2ln4t21t2}.resttocalculatef(a)if4a+1<0??....becontinued...

Commented by mathmax by abdo last updated on 05/Sep/19

f^′ (a) =∫_1 ^2      (dx/(x(1+(x+(a/x))^2 ))) =∫_1 ^2    ((x^2 dx)/(x{x^2  +(x^2  +a)^2 }))  =∫_1 ^2    ((xdx)/(x^2  +x^4  +2ax^2  +a^2 )) =∫_1 ^2  ((xdx)/(x^4  +(2a+1)x^2  +a^2 ))

f(a)=12dxx(1+(x+ax)2)=12x2dxx{x2+(x2+a)2}=12xdxx2+x4+2ax2+a2=12xdxx4+(2a+1)x2+a2

Answered by mind is power last updated on 03/Sep/19

integration by part  f(spa)=[xarctg(x+(a/x))]−∫x(((1−(a/x^2 )))/(1+(x+(a/x))^2 ))dx  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^2 ((x(x^2 −a))/(x^4 +(2a+1)x^2 +a^2 ))dx  u=x^2   du=2xdx  f(a)=2arctv(2+(a/2))−arctg(1+a)−∫_1 ^4 (((u−a)du)/(2(u^2 +(2a+1)u+a^2 )))  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2))−2a−(1/2))/(2(u^2 +(2a+1)u+a^2 ))du  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2)))/(2(u^2 +(2a+1)u+a^2 ))du+((4a+1)/2)∫_1 ^4 (1/((u+((2a+1)/2))^2 +a+(1/4)))du  a>−(1/4)  =2arctg(2+(a/2))−arctg(1+a)−(1/4)[ln(u^2 +(2a+1)u+a^2 )]_1 ^4 +2∫_1 ^4 (du/((((2u)/(√(4a+1)))+((2a+1)/(√(4a+1))))^2 +1))  =2arctg(2+(a/2))−arctg(1+a)−(1/4)ln(((a^2 +8a+20)/(a^2 +2a+2)))+(√(4a+1))[arctg(((2u)/(√(4a+1)))+((2a+1)/(√(4a+1))))]_1 ^2   bee continued

integrationbypartf(spa)=[xarctg(x+ax)]x(1ax2)1+(x+ax)2dx=2arctg(2+a2)arctg(1+a)12x(x2a)x4+(2a+1)x2+a2dxu=x2du=2xdxf(a)=2arctv(2+a2)arctg(1+a)14(ua)du2(u2+(2a+1)u+a2)=2arctg(2+a2)arctg(1+a)14u+(a+12)2a122(u2+(2a+1)u+a2du=2arctg(2+a2)arctg(1+a)14u+(a+12)2(u2+(2a+1)u+a2du+4a+12141(u+2a+12)2+a+14dua>14=2arctg(2+a2)arctg(1+a)14[ln(u2+(2a+1)u+a2)]14+214du(2u4a+1+2a+14a+1)2+1=2arctg(2+a2)arctg(1+a)14ln(a2+8a+20a2+2a+2)+4a+1[arctg(2u4a+1+2a+14a+1)]12beecontinued

Commented by mathmax by abdo last updated on 04/Sep/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com