Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67020 by mathmax by abdo last updated on 21/Aug/19

find f(x) = ∫_0 ^1  arctan(1+xt)dt  with x real

findf(x)=01arctan(1+xt)dtwithxreal

Commented by mathmax by abdo last updated on 22/Aug/19

f(x)=∫_0 ^1  arctan(1+xt)dt  by parts   f(x) =t arctan(1+xt)]_0 ^1  −∫_0 ^1  t (x/(1+(1+xt)^2 ))dt  =arctan(1+x)−x ∫_0 ^1   (t/(1+(1+xt)^2 ))dt but  ∫_0 ^1  (t/(1+(1+xt)^2 ))dt =∫_0 ^1  ((tdt)/(1+1+2xt +x^2 t^2 )) =∫_0 ^1  ((tdt)/(x^2 t^2  +2xt +2))  let decompose F(t)=(t/(x^2 t^2  +2xt+2))  Δ^′  =x^2 −2x^2  =−x^2 <0  if x≠0 so   F(t) =(t/(x^2 (t^2  +((2t)/x)+(2/x^2 )))) =(t/(x^2 (t^2  +((2t)/x) +(1/x^2 ) +(2/x^2 )−(1/x^2 ))))  =(t/(x^2 {(t+(1/x))^2 +(1/x^2 )}))   we use the changement t+(1/x) =(1/(∣x∣))u ⇒xt+1=s(x)u  ∫_(s(x)) ^((x+1)s(x))   (t/(1+(1+tx)^2 ))dt =∫_(s(x)) ^((x+1)s(x))   ((((1/(∣x∣))u−(1/x)))/(x^2 ×(1/x^2 )(1+u^2 )))du  =(1/(∣x∣))∫_(s(x)) ^((x+1)s(x))   (u/(1+u^2 ))−(1/x) ∫_(s(x)) ^((x+1)s(x))  (du/(1+u^2 ))  =(1/(2∣x∣))[ln(1+u^2 )]_(s(x)) ^((x+1)s(x))  −(1/x)[arctanu]_(s(x)) ^((x+1)s(x))      (s^2 (x)=1)  =(1/(2∣x∣)){ln(1+(x+1)^2 )−ln2}−(1/x){arctan(x+1)s(x)−arctan(s(x))}  ⇒f(x)= arctan(1+x)−((s(x))/2){ln(x^2 +2x+2)−ln(2)}  +arctan(x+1)s(x)+x arctan(s(x))  with s(x) =1 if x>0 and s(x)=−1 if x<0

f(x)=01arctan(1+xt)dtbypartsf(x)=tarctan(1+xt)]0101tx1+(1+xt)2dt=arctan(1+x)x01t1+(1+xt)2dtbut01t1+(1+xt)2dt=01tdt1+1+2xt+x2t2=01tdtx2t2+2xt+2letdecomposeF(t)=tx2t2+2xt+2Δ=x22x2=x2<0ifx0soF(t)=tx2(t2+2tx+2x2)=tx2(t2+2tx+1x2+2x21x2)=tx2{(t+1x)2+1x2}weusethechangementt+1x=1xuxt+1=s(x)us(x)(x+1)s(x)t1+(1+tx)2dt=s(x)(x+1)s(x)(1xu1x)x2×1x2(1+u2)du=1xs(x)(x+1)s(x)u1+u21xs(x)(x+1)s(x)du1+u2=12x[ln(1+u2)]s(x)(x+1)s(x)1x[arctanu]s(x)(x+1)s(x)(s2(x)=1)=12x{ln(1+(x+1)2)ln2}1x{arctan(x+1)s(x)arctan(s(x))}f(x)=arctan(1+x)s(x)2{ln(x2+2x+2)ln(2)}+arctan(x+1)s(x)+xarctan(s(x))withs(x)=1ifx>0ands(x)=1ifx<0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com