Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38453 by maxmathsup by imad last updated on 25/Jun/18

find  f(x)=∫_0 ^∞   ((1−cos(xt))/t) e^(−xt) dt with x>0  1) find asimple form of f(x)  2) calculate ∫_0 ^∞    ((1−cos(πt))/t) e^(−t) dt  3)calculate ∫_0 ^∞    ((1−cos(3t))/t) e^(−2t) dt

findf(x)=01cos(xt)textdtwithx>01)findasimpleformoff(x)2)calculate01cos(πt)tetdt3)calculate01cos(3t)te2tdt

Commented by math khazana by abdo last updated on 26/Jun/18

the Q is find f(x)=∫_0 ^∞   ((1−cos(at))/t) e^(−xt) dt

theQisfindf(x)=01cos(at)textdt

Commented by math khazana by abdo last updated on 29/Jun/18

1) we have f(x)=∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt ⇒  f^′ (x)=−∫_0 ^∞    (1−cos(at))e^(−xt) dt  =∫_0 ^∞   cos(at)e^(−xt) dt −∫_0 ^∞   e^(−xt) dt but  ∫_0 ^∞  e^(−xt) dt =[−(1/x)e^(−xt) ]_0 ^(+∞) =(1/x)  ∫_0 ^∞   cos(at) e^(−xt) dt =Re( ∫_0 ^∞  e^(iat−xt) dt)  ∫_0 ^∞    e^((−x+ia)t) dt = [ (1/(−x+ia))e^((−x+ia)t) ]_0 ^(+∞)   =((−1)/(−x+ia)) = (1/(x−ia)) = ((x+ia)/(x^2  +a^2 )) ⇒  ∫_0 ^∞   cos(at)e^(−xt) dt = (x/(x^2  +a^2 )) ⇒  f^′ (x)= (x/(x^2  +a^2 )) −(1/x) ⇒  f(x)= (1/2)ln(x^2  +a^2 ) −ln(x) +c  but ∃m>0 <  ∣ ∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt∣ ≤ m ∫_0 ^∞  e^(−xt) dt=(m/x) →0  when x→+∞ also we have   f(x)=(1/2)ln(((x^2 +a^2 )/x^2 )) +c ⇒  c=lim_(x→+∞) f(x)−(1/2)ln(((x^2  +a^2 )/x^2 ) )=0 ⇒  f(x)=(1/2)ln(x^2  +a^2 ) −ln(x)  with x>0

1)wehavef(x)=01cos(at)textdtf(x)=0(1cos(at))extdt=0cos(at)extdt0extdtbut0extdt=[1xext]0+=1x0cos(at)extdt=Re(0eiatxtdt)0e(x+ia)tdt=[1x+iae(x+ia)t]0+=1x+ia=1xia=x+iax2+a20cos(at)extdt=xx2+a2f(x)=xx2+a21xf(x)=12ln(x2+a2)ln(x)+cbutm>0<01cos(at)textdtm0extdt=mx0whenx+alsowehavef(x)=12ln(x2+a2x2)+cc=limx+f(x)12ln(x2+a2x2)=0f(x)=12ln(x2+a2)ln(x)withx>0

Commented by math khazana by abdo last updated on 29/Jun/18

2) we have proved that   ∫_0 ^∞    ((1−cos(at))/t) e^(−xt) dt =(1/2)ln(x^2  +a^2 )−ln(x)⇒  ∫_0 ^∞    ((1−cos(πt))/t) e^(−t) =(1/2)ln(1+π^2 ).

2)wehaveprovedthat01cos(at)textdt=12ln(x2+a2)ln(x)01cos(πt)tet=12ln(1+π2).

Commented by math khazana by abdo last updated on 29/Jun/18

3)?∫_0 ^∞   ((1−cos(3t))/t) e^(−2t) dt =(1/2)ln(2^2  +3^2 )−ln(2)  =(1/2)ln(13)−ln(2).

3)?01cos(3t)te2tdt=12ln(22+32)ln(2)=12ln(13)ln(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com