Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 73397 by mathmax by abdo last updated on 11/Nov/19

find f(x)=∫_0 ^1  e^(−t) ln(1−xt^2 )dt  with ∣x∣<1  2)calculate ∫_0 ^1  e^(−t) ln(1−(t^2 /2))dt

findf(x)=01etln(1xt2)dtwithx∣<12)calculate01etln(1t22)dt

Commented by abdomathmax last updated on 12/Nov/19

1) we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n    if ∣u∣<1 ⇒  ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  (c=0) ⇒  ln(1−u) =−Σ_(n=1) ^∞  (u^n /n)     we have ∣xt^2 ∣<1 ⇒  ln(1−xt^2 ) =−Σ_(n=1) ^∞  ((x^n  t^(2n) )/n) ⇒  f(x)=−∫_0 ^1 e^(−t)  (Σ_(n=1) ^∞  ((x^n  t^(2n) )/n))dt  =−Σ_(n=1) ^∞  (x^n /n) ∫_0 ^1  t^(2n)  e^(−t)   dt =−Σ_(n=1) ^∞  A_n (x^n /n)  with  A_n =∫_0 ^1  t^(2n)  e^(−t)  dt   let determinate  I_n =∫_0 ^1  t^n  e^(−t)  dt  by parts  u=t^n  and v^′ =e^(−t)  ⇒  I_n =[−e^(−t)  t^n ]_0 ^1 +∫_0 ^1 nt^(n−1)  e^(−t)  dt  =−e^(−1)  +n I_(n−1) =nI_(n−1) −(1/e)  (n>0)  let W_n =(I_n /(n!)) ⇒W_(n+1) =(I_(n+1) /((n+1)!)) =(((n+1)I_n −(1/e))/((n+1)!))  =(I_n /(n!)) −(1/(e(n+1)!)) =W_n −(1/(e(n+1)!)) ⇒  W_(n+1) −W_n =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^(n−1) (W_(k+1) −W_k ) =−(1/e)Σ_(k=0) ^(n−1)   (1/((k+1)!))  ⇒W_n =W_0 −(1/e) Σ_(k=1) ^n  (1/(k!))  we have W_0 =I_0 =∫_0 ^1  e^(−t)  dt  =[−e^(−t) ]_0 ^1  =1−e^(−1)  ⇒W_n =1−e^(−1) −(1/e)Σ_(k=1) ^n  (1/(k!)) ⇒  I_n =n!W_n =n!{1−e^(−1) −e^(−1) Σ_(k=1) ^n  (1/(k!))} ⇒  A_n =(2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))} ⇒  f(x)=−Σ_(n=1) ^∞ (2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))}(x^n /n)  =(e^(−1) −1)Σ_(n=1) ^∞ (((2n)!)/n) x^n  +e^(−1) Σ_(n=1) ^∞ (((2n)!)/n)(Σ_(k=1) ^(2n)  (1/(k!)))x^n   .....be continued....

1)wehaveln(1u)=11u=n=0unifu∣<1ln(1u)=n=0un+1n+1+c(c=0)ln(1u)=n=1unnwehavext2∣<1ln(1xt2)=n=1xnt2nnf(x)=01et(n=1xnt2nn)dt=n=1xnn01t2netdt=n=1AnxnnwithAn=01t2netdtletdeterminateIn=01tnetdtbypartsu=tnandv=etIn=[ettn]01+01ntn1etdt=e1+nIn1=nIn11e(n>0)letWn=Inn!Wn+1=In+1(n+1)!=(n+1)In1e(n+1)!=Inn!1e(n+1)!=Wn1e(n+1)!Wn+1Wn=1e(n+1)!k=0n1(Wk+1Wk)=1ek=0n11(k+1)!Wn=W01ek=1n1k!wehaveW0=I0=01etdt=[et]01=1e1Wn=1e11ek=1n1k!In=n!Wn=n!{1e1e1k=1n1k!}An=(2n)!{1e1e1k=12n1k!}f(x)=n=1(2n)!{1e1e1k=12n1k!}xnn=(e11)n=1(2n)!nxn+e1n=1(2n)!n(k=12n1k!)xn.....becontinued....

Answered by mind is power last updated on 11/Nov/19

f(x)=[−e^(−t) ln(1−xt^2 )]_0 ^1 +∫_0 ^1 ((e^(−t) .−2xt)/(1−xt^2 ))dt  =−e^(−1) ln(1−x)−2x∫_0 ^1 .((te^(−t) dt)/((1−(√x)t)(1+(√x)t)))  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) .(1+t(√x)−(1−t(√x))))/((1−t(√x))(1+t(√x))))dt  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) dt)/(1−t(√x)))+(√x)∫_0 ^1 ((e^(−t) dt)/(1+t(√x)))  let u=1−t(√x) in first and s=1+t(√x) in 2nd  =−e^(−1) ln(1−x)+∫_1 ^(1−(√x)) (e^((u−1)/(√x)) /u)du+∫_1 ^(1+(√x)) (e^((1−s)/(√x)) /s)ds  m=(u/(√x)) in first m=(s/(√x))  in]2nd  =−e^(−1) ln(1−x)+∫^((1/(√x))−1) _(1/(√x)) ((e^m .e^(−(1/(√x))) )/m).dm+∫_(1/(√x)) ^(1+(1/(√x))) e^(1/(√x)) .e^(−m) .(dm/m)346  We use  Ei(w)=∫_(−∞) ^w (e^x /x)dx=∫_∞ ^(−w) (e^(−x) /x)dx  Ei  is exponential integral function   we get −e^(−1) ln(1−x)+{Ei((1/(√x))−1)−Ei((1/(√x)))}e^((−1)/(√x)) +e^(1/(√x)) {Ei(−1−(1/(√x)))−Ei(−(1/(√x)))}  ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt put x=(1/2)  =e^(−1) ln(2)+{Ei((1/(√2))−1)−Ei((1/(√2)))}e^(−(1/(√2))) +e^(1/(√2)) {Ei(−1−(1/(√2)))−Ei((1/(√2)))}

f(x)=[etln(1xt2)]01+01et.2xt1xt2dt=e1ln(1x)2x01.tetdt(1xt)(1+xt)=e1ln(1x)x01et.(1+tx(1tx))(1tx)(1+tx)dt=e1ln(1x)x01etdt1tx+x01etdt1+txletu=1txinfirstands=1+txin2nd=e1ln(1x)+11xeu1xudu+11+xe1sxsdsm=uxinfirstm=sxin]2nd=e1ln(1x)+1x1x1em.e1xm.dm+1x1+1xe1x.em.dmm346WeuseEi(w)=wexxdx=wexxdxEiisexponentialintegralfunctionwegete1ln(1x)+{Ei(1x1)Ei(1x)}e1x+e1x{Ei(11x)Ei(1x)}01etln(1t22)dtputx=12=e1ln(2)+{Ei(121)Ei(12)}e12+e12{Ei(112)Ei(12)}

Commented by mind is power last updated on 11/Nov/19

y′re welcom

yrewelcom

Commented by mathmax by abdo last updated on 11/Nov/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com