All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38465 by maxmathsup by imad last updated on 25/Jun/18
findf(x)=∫01ln(1+xt3)dtwith∣x∣<1.2)calculate∫01ln(1+4t3)dtand∫01ln(2+t3)dt.
Commented by maxmathsup by imad last updated on 30/Jun/18
1)wehavef(x)=∫01(∑n=1∞(−1)n−1nxnt3n)dt=∑n=1∞(−1)n−1nxn13n+1=∑n=1∞(−1)n−1n(3n+1)xnf(x)3=∑n=1∞(−1)n−13n(3n+1)xn=∑n=1∞(−1)n−1{13n−13n+1}xn=13∑n=1∞(−1)n−1nxn−∑n=1∞(−1)n−13n+1xnbut∑n=1∞(−1)nnxn=ln(1+x)letw(x)=∑n=1∞(−1)n−13n+1xnif0<x<1w(x)=1x13∑n=1∞(−1)n−13n+1(3x)3n+1=3(x)−1φ(3x)withφ(x)=∑n=1∞(−1)n−13n+1x3n+1⇒φ′(x)=∑n=1∞(−1)n−1x3n=∑n=0∞(−1)nx3n+3=x311+x3=x31+x3⇒φ(x)=∫0xt31+t3dt+cc=φ(o)=0⇒φ(x)=∫0xt31+t3dt=∫0x1+t3−11+t3dt=x−∫0xdt1+t3letdecomposeF(t)=11+t3F(t)=1(t+1)(t2−t+1)=at+1+bt+ct2−t+1a=limt→−1(t+1)φ(t)=13limt→+∞tφ(t)=0=a+b⇒b=−13⇒F(t)=13(t+1)+−13t+ct2−t+1F(0)=1=13+c⇒c=23⇒F(x)=13(t+1)+13−t+1t2−t+1∫0xF(t)dt=13∫0xdtt+1−16∫0x2t−1−1t2−t+1dt=[13ln∣t+1∣−16ln(∣t2−t+1∣]0x+16∫0xdtt2−t+1=[16ln((t+1)2t2−t+1)]0x+16∫0xdtt2−t+1=16ln(x2+2x+1x2−x+1)+II=16∫0xdtt2−2t2+14+34⇒6I=∫0xdt(t−12)2+34=t−12=32u43∫−132x−1311+u232du=23[arctan(2x−13)+arctan(13)}⇒∫0xF(t)dt=16ln(x2+2x+1x2−x+1)+133{arctan(2x−13)+arctan(13)}φ(x)=x−16ln(x2+2x+1x2−x+1)−133{arctan(2x−13)+π6}w(x)=1(3x)φ(3x)⇒f(x)3=13ln(1+x)−w(x)⇒f(x)=ln(1+x)−3w(x).
2)letI=∫01ln(2+t3)dtI=∫01ln(2(1+12t3))dt=ln(2)+∫01ln(1+12t3)dt=ln(2)+f(12)=ln(2)+ln(32)−3w(12)=ln(2)+ln(32)−332φ(1(32))thevalueofφ(x)isknown.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com