Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36336 by prof Abdo imad last updated on 31/May/18

find f(x)= ∫_0 ^∞   arctan(xt^2 )dt with x>0

findf(x)=0arctan(xt2)dtwithx>0

Commented by abdo.msup.com last updated on 01/Jun/18

we have f^′ (x)=∫_0 ^∞   (t^2 /(1+x^2 t^4 ))dt  2f^′ (x)=∫_(−∞) ^(+∞)    (t^2 /(x^2 t^4  +1))dt let consider  the complex function  ϕ(z) =(z^2 /(x^2 z^4  +1)) we have  ϕ(z) = (z^2 /(x^2 { z^4  +(1/x^2 )}))  = (z^2 /(x^2 {z^2  −(i/x)}(z^2  +(i/x))))  =(z^2 /(x^2 (z −(1/(√x))e^(i(π/4)) )(z +(1/(√x))e^(i(π/4)) )(z−(1/(√x))e^(−i(π/4)) )(z +(1/(√x))e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,(1/(√x))e^((iπ)/4) )+Res(ϕ,−(1/(√x))e^(−((iπ)/4)) )}  Res(ϕ, (1/(√x))e^(i(π/4)) ) = (i/(x^3 ((2/(√x))e^((iπ)/4) )(((2i)/x))))  = ((√x)/(4x^2 )) e^(−((iπ)/4))   Res(ϕ,−(1/(√x))e^(−((iπ)/4)) )= ((−i)/(x^3 (((−2)/(√x))e^(−((iπ)/4)) )(((−2i)/x))))  =−((√x)/(4x^2 )) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ .((√x)/(4x^2 )){ e^(−((iπ)/4))  −e^((iπ)/4) }  =((iπ(√x))/(2x^2 )){−2isin((π/4))}  =((π(√x))/x^2 )  ((√2)/2) = ((π(√x))/(x^2 (√2)))

wehavef(x)=0t21+x2t4dt2f(x)=+t2x2t4+1dtletconsiderthecomplexfunctionφ(z)=z2x2z4+1wehaveφ(z)=z2x2{z4+1x2}=z2x2{z2ix}(z2+ix)=z2x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)}Res(φ,1xeiπ4)=ix3(2xeiπ4)(2ix)=x4x2eiπ4Res(φ,1xeiπ4)=ix3(2xeiπ4)(2ix)=x4x2eiπ4+φ(z)dz=2iπ.x4x2{eiπ4eiπ4}=iπx2x2{2isin(π4)}=πxx222=πxx22

Commented by abdo.msup.com last updated on 01/Jun/18

⇒f^′ (x) = (π/(2(√2)))  ((√x)/x^2 ) ⇒  f(x)= (π/(2(√2))) ∫      (((√x) dx)/x^2 ) +c  but  ∫  (((√x)dx)/x^2 ) =_((√x)=t)  ∫     (t/t^4 ) 2t dt  = 2 ∫   (dt/t^2 ) = −(2/t) +λ = ((−2)/(√x)) +λ ⇒  f(x) = (π/(2(√2))) ((−2)/(√x)) +c = ((−π)/(√(2x)))  +c

f(x)=π22xx2f(x)=π22xdxx2+cbutxdxx2=x=ttt42tdt=2dtt2=2t+λ=2x+λf(x)=π222x+c=π2x+c

Commented by abdo.msup.com last updated on 01/Jun/18

we have f(1) = −(π/2) +c ⇒  c=(π/2) +f(1) =(π/2) +∫_0 ^∞  arctan(x^2 ) dx  f(x)= −(π/(2(√x)))  +(π/2) + ∫_0 ^∞  arctan(x^2 )dx .  the value of this integral is easy to  find.(by parts)

wehavef(1)=π2+cc=π2+f(1)=π2+0arctan(x2)dxf(x)=π2x+π2+0arctan(x2)dx.thevalueofthisintegraliseasytofind.(byparts)

Commented by prof Abdo imad last updated on 01/Jun/18

 let put  L =lim_(x→+∞) f(x) ⇒c=Lso  f(x)= L−(π/(√(2x))) .

letputL=limx+f(x)c=Lsof(x)=Lπ2x.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com