All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 85236 by jagoll last updated on 20/Mar/20
findf(x)iff′(x)+f(x2)=2x+1
Commented by mathmax by abdo last updated on 20/Mar/20
itsclearthatfispolynomialletf(x)=∑n=0∞anxnf′(x)=∑n=1∞nanxn−1=∑n=0∞(n+1)an+1xnf(x2)=∑n=0∞anx2n⇒∑n=0∞(n+1)an+1xn+∑n=0∞anx2n=2x+1changementofindice2n=p⇒∑n=0∞(n+1)anxn+∑p=0∞a[p2]xp=2x+1⇒∑n=0∞{(n+1)an+a[n2]}xn=2x+1⇒{a0+a0=12a1+a0=2and(n+1)an+a[n2]=0∀n⩾2⇒{a0=12andan=−a[n2]n+1∀n⩾2a1=34a2=−a13,a3=−a14.....
Answered by john santu last updated on 20/Mar/20
dfdx=2x+1−f(x2)df=(2x+1)dx−f(x2)dx∫df=∫(2x+1)dx−∫f(x2)dxf(x)=x2+x−∫f(x2)dxK=∫f(x2)dxletu=x2⇒du=2xdxdx=du2uK=∫f(u)×2duu
Commented by jagoll last updated on 20/Mar/20
howtosolve∫f(u)×2duu
Terms of Service
Privacy Policy
Contact: info@tinkutara.com