Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42801 by maxmathsup by imad last updated on 02/Sep/18

find f(x) = ∫_(π/4) ^(π/3)     ((cosxdx)/(2cos^2 x +sin^2 x +1))

findf(x)=π4π3cosxdx2cos2x+sin2x+1

Commented by maxmathsup by imad last updated on 04/Sep/18

let I = ∫_(π/4) ^(π/3)     ((cosxdx)/(2(1−sin^2 x) +sin^2 x +1)) changement sinx =t give  I = ∫_(1/(√2)) ^((√3)/2)      (dt/(2(1−t^2 )+t^2  +1)) = ∫_(1/(√2)) ^((√3)/2)    (dt/(3 −t^2 )) =∫_(1/(√2)) ^((√3)/2)     (dt/(((√3)−t)((√3)+t)))dt  = (1/(2(√3))) ∫_(1/(√2)) ^((√3)/2)    {(1/((√3)−t)) +(1/((√3)+t))}dt =(1/(2(√3))) [ln∣(((√3)+t)/((√3)−t))∣]_(1/(√2)) ^((√3)/2)   = (1/(2(√3))){ ln∣(((√3)+((√3)/2))/((√3)−((√3)/2)))∣  −ln∣(((√3)+(1/(√2)))/((√3)−(1/(√2))))∣} = (1/(2(√3))){ ln(((3(√3))/(√3)))−ln((((√6)+1)/((√6)−1)))} =(1/(2(√3))){ln(3)−ln(((1+(√6))/(−1+(√6))))} .

letI=π4π3cosxdx2(1sin2x)+sin2x+1changementsinx=tgiveI=1232dt2(1t2)+t2+1=1232dt3t2=1232dt(3t)(3+t)dt=1231232{13t+13+t}dt=123[ln3+t3t]1232=123{ln3+32332ln3+12312}=123{ln(333)ln(6+161)}=123{ln(3)ln(1+61+6)}.

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18

∫_(1/(√2)) ^((√3)/2)  (dt/(2(1−t^2 )+t^2 +1))  t=sinx  dt=cosxdx  ∫_(1/(√2)) ^((√3)/2)  (dt/(3−t^2 ))=∣(1/(2(√3)))ln(((t+(√3))/(t−(√3))))∣_(1/(√2)) ^((√3)/2)   (1/(2(√3))){ln∣(((((√3)/2)+(√3))/(((√3)/2)−(√3))))∣−ln∣((((1/(√2))+(√3))/((1/(√2))−(√3))))∣}  =(1/(2(√3))){ln∣(((3/2)/(−(1/2))))∣−ln∣(((1+(√6))/(1−(√6))))∣}  =(1/(2(√3))){ln∣−3∣−ln∣(((1+(√6))/(1−(√6))))}    use formula ∫(dx/(a^2 −x^2 ))=(1/(2a))∫((a+x+a−x)/((a+x)(a−x)))dx  (1/(2a))[∫(dx/(a−x))+∫(dx/(a+x))]  (1/(2a))[∫(dx/(x+a))−∫(dx/(x−a))]=(1/(2a))ln(((x+a)/(x−a)))

1232dt2(1t2)+t2+1t=sinxdt=cosxdx1232dt3t2=∣123ln(t+3t3)1232123{ln(32+3323)ln(12+3123)}=123{ln(3212)ln(1+616)}=123{ln3ln(1+616)}useformuladxa2x2=12aa+x+ax(a+x)(ax)dx12a[dxax+dxa+x]12a[dxx+adxxa]=12aln(x+axa)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com