All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 42801 by maxmathsup by imad last updated on 02/Sep/18
findf(x)=∫π4π3cosxdx2cos2x+sin2x+1
Commented by maxmathsup by imad last updated on 04/Sep/18
letI=∫π4π3cosxdx2(1−sin2x)+sin2x+1changementsinx=tgiveI=∫1232dt2(1−t2)+t2+1=∫1232dt3−t2=∫1232dt(3−t)(3+t)dt=123∫1232{13−t+13+t}dt=123[ln∣3+t3−t∣]1232=123{ln∣3+323−32∣−ln∣3+123−12∣}=123{ln(333)−ln(6+16−1)}=123{ln(3)−ln(1+6−1+6)}.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
∫1232dt2(1−t2)+t2+1t=sinxdt=cosxdx∫1232dt3−t2=∣123ln(t+3t−3)∣1232123{ln∣(32+332−3)∣−ln∣(12+312−3)∣}=123{ln∣(32−12)∣−ln∣(1+61−6)∣}=123{ln∣−3∣−ln∣(1+61−6)}useformula∫dxa2−x2=12a∫a+x+a−x(a+x)(a−x)dx12a[∫dxa−x+∫dxa+x]12a[∫dxx+a−∫dxx−a]=12aln(x+ax−a)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com