All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29162 by abdo imad last updated on 04/Feb/18
findfindI=∫13∣x−2∣(x2−4x)2dx.
Commented by abdo imad last updated on 06/Feb/18
thechaslesrelationgiveI=∫12−x+2(x2−4x)2dx+∫23x−2(x2−4x)2dx∫12−x+2(x2−4x)2dx=−12∫122x−4(x2−4x)2dx=12[1x2−4x]12=12(−14+13)=124and∫23x−2(x2−4x)2dx=12∫132x−4(x2−4x)2dx=−12[1x2−4x]13=−12(−13+13)=0⇒I=124.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com