All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146758 by tabata last updated on 15/Jul/21
findforierseriestohalfrangoff(x)=sinx,0<x<πandprovethat∑∞n=114n2−1=12
Answered by Olaf_Thorendsen last updated on 15/Jul/21
SN=∑Nn=114n2−1=12∑Nn=1(12n−1−12n+1)SN=12∑Nn=1(1−12N+1)⇒S∞=12
Commented by tabata last updated on 15/Jul/21
andforiersir?
f(x)=sinx,0<x<πa0=2π∫0πf(x)dx=2π∫0πsinxdxa0=2π[−cosx]0π=4πa1=2π∫0πsinxcosdx=1π∫0πsin(2x)dxa1=0n>1:an=2π∫0πf(x)cos(nπxπ)dxan=2π∫0πsinxcos(nx)dxan=2π∫0π12[sin((n+1)x)−sin((n−1)x)]dxan=2π∫0π12[sin((n+1)x)−sin((n−1)x)]dxan=1π[−cos((n+1)x)n+1+cos((n−1)x)n−1]0πan=1π[−(−1)n+1n+1+(−1)n−1n−1+1n+1−1n−1]an=−2π(n2−1)[(−1)n+1]sinx=a02+a1cosx+∑∞n=2ancos(nx)sinx=2π−2π∑∞n=2(−1)n+1n2−1cos(nx)n=2msinx=2π−4π∑∞m=114m2−1cos(2mx)x=0:0=2π−4π∑∞m=114m2−1∑∞m=114m2−1=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com