Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146758 by tabata last updated on 15/Jul/21

find forier series to half rang of   f(x)=sinx  ,0<x<π and prove that  Σ_(n=1) ^∞ (1/(4n^2 −1))=(1/2)

findforierseriestohalfrangoff(x)=sinx,0<x<πandprovethatn=114n21=12

Answered by Olaf_Thorendsen last updated on 15/Jul/21

S_N  = Σ_(n=1) ^N (1/(4n^2 −1)) = (1/2)Σ_(n=1) ^N ((1/(2n−1))−(1/(2n+1)))  S_N  = (1/2)Σ_(n=1) ^N (1−(1/(2N+1)))  ⇒ S_∞  = (1/2)

SN=Nn=114n21=12Nn=1(12n112n+1)SN=12Nn=1(112N+1)S=12

Commented by tabata last updated on 15/Jul/21

and forier sir ?

andforiersir?

Answered by Olaf_Thorendsen last updated on 15/Jul/21

  f(x) = sinx, 0<x<π  a_0  = (2/π)∫_0 ^π f(x) dx = (2/π)∫_0 ^π sinx dx  a_0  = (2/π)[−cosx]_0 ^π  = (4/π)  a_1  = (2/π)∫_0 ^π sinxcos dx = (1/π)∫_0 ^π sin(2x)dx  a_1  = 0  n > 1 :  a_n  = (2/π)∫_0 ^π f(x)cos(((nπx)/π)) dx  a_n  = (2/π)∫_0 ^π sinxcos(nx) dx  a_n  = (2/π)∫_0 ^π (1/2)[sin((n+1)x)−sin((n−1)x)] dx  a_n  = (2/π)∫_0 ^π (1/2)[sin((n+1)x)−sin((n−1)x)] dx  a_n  = (1/π)[−((cos((n+1)x))/(n+1))+((cos((n−1)x))/(n−1))]_0 ^π   a_n  = (1/π)[−(((−1)^(n+1) )/(n+1))+(((−1)^(n−1) )/(n−1))+(1/(n+1))−(1/(n−1))]  a_n  = −(2/(π(n^2 −1)))[(−1)^n +1]  sinx = (a_0 /2)+a_1 cosx+Σ_(n=2) ^∞ a_n cos(nx)  sinx = (2/π)−(2/π)Σ_(n=2) ^∞ (((−1)^n +1)/(n^2 −1))cos(nx)  n = 2m  sinx = (2/π)−(4/π)Σ_(m=1) ^∞ (1/(4m^2 −1))cos(2mx)  x = 0 :  0 = (2/π)−(4/π)Σ_(m=1) ^∞ (1/(4m^2 −1))  Σ_(m=1) ^∞ (1/(4m^2 −1)) = (1/2)

f(x)=sinx,0<x<πa0=2π0πf(x)dx=2π0πsinxdxa0=2π[cosx]0π=4πa1=2π0πsinxcosdx=1π0πsin(2x)dxa1=0n>1:an=2π0πf(x)cos(nπxπ)dxan=2π0πsinxcos(nx)dxan=2π0π12[sin((n+1)x)sin((n1)x)]dxan=2π0π12[sin((n+1)x)sin((n1)x)]dxan=1π[cos((n+1)x)n+1+cos((n1)x)n1]0πan=1π[(1)n+1n+1+(1)n1n1+1n+11n1]an=2π(n21)[(1)n+1]sinx=a02+a1cosx+n=2ancos(nx)sinx=2π2πn=2(1)n+1n21cos(nx)n=2msinx=2π4πm=114m21cos(2mx)x=0:0=2π4πm=114m21m=114m21=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com