Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147066 by tabata last updated on 17/Jul/21

find laurant series lf     (1)f(z)=(1/(z−1))+(1/(z+2))  ,∣z∣>1    (2)f(z)=(1/(z−2))−(2/(z−3))  ,∣z∣<3

findlaurantserieslf(1)f(z)=1z1+1z+2,z∣>1(2)f(z)=1z22z3,z∣<3

Answered by mathmax by abdo last updated on 17/Jul/21

1) f(z)=(1/(z−1))+(1/(z+2))  we have (1/(z−1))=(1/(z(1−(1/z))))  (∣(1/z)∣<1)  =(1/z)Σ_(n=0) ^(∞ )  (1/z^n )=Σ_(n=0) ^∞  (1/z^(n+1) )=Σ_(n=1) ^∞  (1/z^n )  (1/(z+2))=_((1/z)=y)     (1/((1/y)+2))=(y/(1+2y))  2y=(2/z) ⇒∣2y∣=(2/(∣z∣))<1 ⇒((∣z∣)/2)>1 ⇒∣z∣>2  we get  (y/(1+2y))=yΣ_(n=0) ^∞  (−1)^n (2y)^n  =Σ_(n=0) ^∞ (−1)^n (2^n /z^n ) ⇒  f(z)=Σ_(n=1) ^∞ (1/z^n )+Σ_(n=0) ^∞  (((−2)^n )/z^n )=1+Σ_(n=1) ^∞ (1+(−2)^n )(1/z^n )  ∣2y∣>1 ⇒(2/(∣z∣))>1 ⇒1<∣z∣<2 ⇒  (y/(1+2y))=(y/(2y(1+(1/(2y)))))=(1/2)Σ_(n=0) ^∞ (−1)^n ((1/(2y)))^n   =(1/2)Σ_(n=0) ^∞  (((−1)^n )/(2^n y^n )) =Σ_(n=0) ^∞  (((−1)^n )/2^(n+1) )z^n  ⇒  f(z)=Σ_(n=1) ^∞  (1/z^n ) +Σ_(n=0) ^∞  (((−1)^n )/2^(n+1) )z^n

1)f(z)=1z1+1z+2wehave1z1=1z(11z)(1z∣<1)=1zn=01zn=n=01zn+1=n=11zn1z+2=1z=y11y+2=y1+2y2y=2z⇒∣2y∣=2z<1z2>1⇒∣z∣>2wegety1+2y=yn=0(1)n(2y)n=n=0(1)n2nznf(z)=n=11zn+n=0(2)nzn=1+n=1(1+(2)n)1zn2y∣>12z>11<∣z∣<2y1+2y=y2y(1+12y)=12n=0(1)n(12y)n=12n=0(1)n2nyn=n=0(1)n2n+1znf(z)=n=11zn+n=0(1)n2n+1zn

Answered by Olaf_Thorendsen last updated on 17/Jul/21

(1)  f(z) = (1/(z−1))+(1/(z+2)), ∣z∣>1  f(z) = (1/z).(1/(1−(1/z)))+(1/2).(1/(1+(z/2)))  ∣z∣>1 ⇒ ∣(1/z)∣<1  f(z) = (1/z).Σ_(n=0) ^∞ (1/z^n )+(1/2).Σ_(n=0) ^∞ (−1)^n (z^n /2^n )  f(z) = Σ_(n=1) ^∞ (1/z^n )+Σ_(n=0) ^∞ (−1)^n (z^n /2^(n+1) )  (2)  f(z) = (1/(z−2))−(2/(z−3)), ∣z∣<3  −(2/(z−3)) = (2/3).(1/(1−(z/3))) = −(2/3)Σ_(n=0) ^∞ (z^n /3^n )  1st case : ∣z∣<2  (1/(z−2)) = −(1/2).(1/(1−(z/2))) = −(1/2)Σ_(n=0) ^∞ (z^n /2^n )  f(z) = −Σ_(n=0) ^∞ ((1/2^(n+1) )+(2/3^(n+1) ))z^n     2nd case : 2<∣z∣<3 ⇒ (2/(∣z∣))<1  (1/(z−2)) = (1/z).(1/(1−(2/z))) = (1/z)Σ_(n=0) ^∞ (2^n /z^n ) = Σ_(n=1) ^∞ (2^(n−1) /z^n )  f(z) = Σ_(n=1) ^∞ (2^(n−1) /z^n )−Σ_(n=0) ^∞ (2/3^(n+1) )z^n

(1)f(z)=1z1+1z+2,z∣>1f(z)=1z.111z+12.11+z2z∣>11z∣<1f(z)=1z.n=01zn+12.n=0(1)nzn2nf(z)=n=11zn+n=0(1)nzn2n+1(2)f(z)=1z22z3,z∣<32z3=23.11z3=23n=0zn3n1stcase:z∣<21z2=12.11z2=12n=0zn2nf(z)=n=0(12n+1+23n+1)zn2ndcase:2<∣z∣<32z<11z2=1z.112z=1zn=02nzn=n=12n1znf(z)=n=12n1znn=023n+1zn

Commented by Mrsof last updated on 17/Jul/21

sir why you give ∣z∣<2 ?

sirwhyyougivez∣<2?

Commented by Olaf_Thorendsen last updated on 17/Jul/21

because in the first case the serie   is convergent only for ∣z∣<2

becauseinthefirstcasetheserieisconvergentonlyforz∣<2

Commented by Mrsof last updated on 18/Jul/21

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 17/Jul/21

2)g(z)=(1/(z−2))−(2/(z−3))  we have  (2/(z−3))=−(2/(3−z))=((−2)/(3(1−(z/3))))=−(2/3)Σ_(n=0) ^∞  (z^n /3^n )=−2Σ_(n=0) ^∞  (z^n /3^(n+1) )   (∣(z/3)∣<1)  (1/(z−2))=_(y=(z/3))   (1/(3y−2)) =((−1)/(2−3y)) =((−1)/(2(1−(3/2)y)))  ∣((3y)/2)∣=∣(z/2)∣<1 ⇒∣z∣<2  inthis case we get  (1/(z−2))=−(1/2)Σ_(n=0) ^∞  ((3/2))^n y^n  =−(1/2)Σ_(n=0) ^∞ (3^n /2^n )(z^n /3^n )=−(1/2)Σ_(n=0) ^∞  (z^n /2^n ) ⇒  g(z)=−2Σ_(n=0) ^∞  (z^n /3^(n+1) )−Σ_(n=0) ^∞  (z^n /2^(n+1) )=Σ_(n=0) ^∞ (−(2/3^(n+1) )−(1/2^(n+1) ))z^n   ∣((3y)/2)∣>1 ⇒∣(z/2)∣>1 ⇒2<∣z∣<3  we get   (1/(z−2))=((−1)/(3y((2/(3y))−1)))=(1/(3y(1−(2/(3y)))))=(1/(3y))Σ_(n=0) ^∞  ((2/(3y)))^n   =(1/z)Σ_(n=0) ^∞  (2^n /z^n ) =Σ_(n=0) ^∞  (2^n /z^(n+1) ) ⇒g(z)=−2Σ_(n=0) ^∞  (z^n /3^(n+1) )+Σ_(n=0) ^∞  (2^n /z^(n+1) )

2)g(z)=1z22z3wehave2z3=23z=23(1z3)=23n=0zn3n=2n=0zn3n+1(z3∣<1)1z2=y=z313y2=123y=12(132y)3y2∣=∣z2∣<1⇒∣z∣<2inthiscaseweget1z2=12n=0(32)nyn=12n=03n2nzn3n=12n=0zn2ng(z)=2n=0zn3n+1n=0zn2n+1=n=0(23n+112n+1)zn3y2∣>1⇒∣z2∣>12<∣z∣<3weget1z2=13y(23y1)=13y(123y)=13yn=0(23y)n=1zn=02nzn=n=02nzn+1g(z)=2n=0zn3n+1+n=02nzn+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com