Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 148724 by Sozan last updated on 30/Jul/21

find laurent series f(z)=(1/(z^2 −z+1))  ,0<∣z−1∣<1

findlaurentseriesf(z)=1z2z+1,0<∣z1∣<1

Answered by mathmax by abdo last updated on 30/Jul/21

the way of this kind is to use changement z−1=y ⇒  f(z)=ϕ(y)=(1/((y+1)^2 −(y+1)+1))=(1/(y^2  +2y+1−y))  =(1/(y^2 +y+1))   roots of y^2  +y+1=0  Δ=1−4=−3 ⇒z_1 =((−1+i(√3))/2)=e^((2iπ)/3)   and z_2 =((−1−i(√3))/2)=e^(−((2iπ)/3))   ⇒ϕ(y)=(1/((y−z_1 )(y−z_2 )))=(1/(z_1 −z_2 ))((1/(y−z_1 ))−(1/(y−z_2 )))  =(1/(2i.((√3)/2)))((1/(y−z_1 ))−(1/(y−z_2 )))  we have ∣(y/z_1 )∣=∣y∣<1  ∣(y/z_2 )∣=∣y∣<1 ⇒ϕ(y)=(1/(i(√3))){  (1/(z_1 ((y/z_1 )−1)))−(1/(z_2 ((y/z_2 )−1)))}  =(1/(i(√3)))((1/z_2 )×(1/(1−(y/z_2 )))−(1/z_1 )×(1/(1−(y/z_1 ))))  =(e^((2iπ)/3) /(i(√3)))Σ_(n=0) ^∞  (y^n /z_2 ^n )−(e^(−((2iπ)/3)) /(i(√3)))Σ_(n=0) ^∞  (y^n /z_1 ^n )  =(1/(i(√3)))e^((2iπ)/3)  Σ_(n=0) ^∞  e^((i2nπ)/3)  y^n   −(1/(i(√3)))e^((−2iπ)/3)  Σ_(n=0) ^∞  e^(−((i2nπ)/3))  y^n   =(1/(i(√3)))Σ_(n=0) ^∞  e^((i(2n+1)π)/3)  (z−1)^n  −(1/(i(√3)))Σ_(n=0) ^∞  e^(−((i(2n+1)π)/3))  (z−1)^n   =(1/(i(√3)))Σ_(n=0) ^∞ 2isin((((2n+1)π)/3))(z−1)^n  ⇒  f(z)=(2/( (√3)))Σ_(n=0) ^∞  sin((((2n+1)π)/3))(z−1)^n

thewayofthiskindistousechangementz1=yf(z)=φ(y)=1(y+1)2(y+1)+1=1y2+2y+1y=1y2+y+1rootsofy2+y+1=0Δ=14=3z1=1+i32=e2iπ3andz2=1i32=e2iπ3φ(y)=1(yz1)(yz2)=1z1z2(1yz11yz2)=12i.32(1yz11yz2)wehaveyz1∣=∣y∣<1yz2∣=∣y∣<1φ(y)=1i3{1z1(yz11)1z2(yz21)}=1i3(1z2×11yz21z1×11yz1)=e2iπ3i3n=0ynz2ne2iπ3i3n=0ynz1n=1i3e2iπ3n=0ei2nπ3yn1i3e2iπ3n=0ei2nπ3yn=1i3n=0ei(2n+1)π3(z1)n1i3n=0ei(2n+1)π3(z1)n=1i3n=02isin((2n+1)π3)(z1)nf(z)=23n=0sin((2n+1)π3)(z1)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com