All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 148724 by Sozan last updated on 30/Jul/21
findlaurentseriesf(z)=1z2−z+1,0<∣z−1∣<1
Answered by mathmax by abdo last updated on 30/Jul/21
thewayofthiskindistousechangementz−1=y⇒f(z)=φ(y)=1(y+1)2−(y+1)+1=1y2+2y+1−y=1y2+y+1rootsofy2+y+1=0Δ=1−4=−3⇒z1=−1+i32=e2iπ3andz2=−1−i32=e−2iπ3⇒φ(y)=1(y−z1)(y−z2)=1z1−z2(1y−z1−1y−z2)=12i.32(1y−z1−1y−z2)wehave∣yz1∣=∣y∣<1∣yz2∣=∣y∣<1⇒φ(y)=1i3{1z1(yz1−1)−1z2(yz2−1)}=1i3(1z2×11−yz2−1z1×11−yz1)=e2iπ3i3∑n=0∞ynz2n−e−2iπ3i3∑n=0∞ynz1n=1i3e2iπ3∑n=0∞ei2nπ3yn−1i3e−2iπ3∑n=0∞e−i2nπ3yn=1i3∑n=0∞ei(2n+1)π3(z−1)n−1i3∑n=0∞e−i(2n+1)π3(z−1)n=1i3∑n=0∞2isin((2n+1)π3)(z−1)n⇒f(z)=23∑n=0∞sin((2n+1)π3)(z−1)n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com