Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66321 by mathmax by abdo last updated on 12/Aug/19

find lim_(x→0^+ )    (tan((π/(2+x))))^x

findlimx0+(tan(π2+x))x

Commented by mathmax by abdo last updated on 24/Aug/19

let A(x) =(tan((π/(2+x))))^x  ⇒ A(x) =e^(xln((π/(2+x))))   changement (π/(2+x)) =t give ((2+x)/π) =(1/t) ⇒2+x =(π/t) ⇒x =(π/t)−2 ⇒  A(x) =B(t) =e^(((π/t)−2)ln(tant))  ⇒lim_(x→0)  A(x)=lim_(t→(π/2))  e^(((π/t)−2)ln(t))   =lim_(t→(π/2))   e^((π−2t)((ln(tant))/(2t)))   changement π−2t =u give 2t=π−u  lim_(t→(π/2))   B(t) =lim_(u→0)    e^(u((ln(tan((π/2)−(u/2))))/(π−u)))   =lim_(u→0)     e^((u/(π−u))ln((1/(tan((u/2))))))  =lim_(u→0)    e^(−(u/(π−u))ln(tan((u/2))))  =1   because tan((u/2))∼(u/2)(V(0)) and lim_(u→0^+ )  ulnu=0

letA(x)=(tan(π2+x))xA(x)=exln(π2+x)changementπ2+x=tgive2+xπ=1t2+x=πtx=πt2A(x)=B(t)=e(πt2)ln(tant)limx0A(x)=limtπ2e(πt2)ln(t)=limtπ2e(π2t)ln(tant)2tchangementπ2t=ugive2t=πulimtπ2B(t)=limu0euln(tan(π2u2))πu=limu0euπuln(1tan(u2))=limu0euπuln(tan(u2))=1becausetan(u2)u2(V(0))andlimu0+ulnu=0

Commented by mathmax by abdo last updated on 24/Aug/19

another way  we have (π/(2+x)) =(π/(2(1+(x/2)))) ∼(π/2)(1−(x/2))=(π/2)−((πx)/4)  ⇒tan((π/(2+x))) =(1/(tan(((πx)/4))))  but (tan((π/(2+x))))^x  =e^(xln(tan((π/(2+x)))))   ⇒f(x)  =e^(−xln(tan(((πx)/4))))  ∼ e^(−xln(((πx)/4)))  →1  (x→0)

anotherwaywehaveπ2+x=π2(1+x2)π2(1x2)=π2πx4tan(π2+x)=1tan(πx4)but(tan(π2+x))x=exln(tan(π2+x))f(x)=exln(tan(πx4))exln(πx4)1(x0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com