All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 85146 by john santu last updated on 19/Mar/20
findminimum&maximumvalueoffunctionf(x)=−sin2x+sinx−12,−π⩽x⩽π
Commented by mr W last updated on 19/Mar/20
f(x)=−(sin2x−sinx+14)−14=−(sinx−12)2−14fmax=−14atsinx=12,i.e.x=π6,5π6fmin=−52atsinx=−1,i.e.x=−π2
Answered by jagoll last updated on 19/Mar/20
Answered by Rio Michael last updated on 19/Mar/20
Maximumvalue=−0.25noteatmaximumvauef′(x)=0minimumvalue=−2.5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com