Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178793 by infinityaction last updated on 21/Oct/22

find  Σ_(n=0) ^∞  (1/((3n)!)) = 1+(1/(3!))+(1/(6!))+(1/(9!))+...

findn=01(3n)!=1+13!+16!+19!+...

Answered by aleks041103 last updated on 21/Oct/22

w=e^((2πi)/3) ⇒w^2 =w^∗ ,w^3 =1  e^w =Σ_(n=0) ^∞ (1/((3n)!))+(w/((3n+1)!))+(w^2 /((3n+2)!))=S_0 +wS_1 +w^2 S_2   e^w^2  =Σ_(n=0) ^∞ (1/((3n)!))+(w^2 /((3n+1)!))+(w/((3n+2)!))=S_0 +w^2 S_1 +wS_2   e^1 =S_0 +S_1 +S_2   e^w +e^w^2  −2e=(w+w^2 −2)(S_1 +S_2 )=−3(S_1 +S_2 )  ⇒S_0 =e−(S_1 +S_2 )=e+(((exp(w)+exp(w^2 )−2e))/3)=  =((e^1 +e^w +e^w^2  )/3)=S_0   w=e^((2πi)/3) =−(1/2)+i((√3)/2)  w^2 =e^(−((2πi)/3)) =−(1/2)−i((√3)/2)  ⇒e^w =(1/( (√e)))e^(i(√3)/2) ,e^w^2  =(1/( (√e)))e^(−i(√3)/2)   ⇒e^w +e^w^2  =(2/( (√e)))cos(((√3)/2))  ⇒Σ_(n=0) ^∞ (1/((3n)!))=(e/3)+(2/(3(√e)))cos((√3)/2)

w=e2πi3w2=w,w3=1ew=n=01(3n)!+w(3n+1)!+w2(3n+2)!=S0+wS1+w2S2ew2=n=01(3n)!+w2(3n+1)!+w(3n+2)!=S0+w2S1+wS2e1=S0+S1+S2ew+ew22e=(w+w22)(S1+S2)=3(S1+S2)S0=e(S1+S2)=e+(exp(w)+exp(w2)2e)3==e1+ew+ew23=S0w=e2πi3=12+i32w2=e2πi3=12i32ew=1eei3/2,ew2=1eei3/2ew+ew2=2ecos(32)n=01(3n)!=e3+23ecos(3/2)

Commented by aleks041103 last updated on 21/Oct/22

Commented by Tawa11 last updated on 22/Oct/22

Great sir

Greatsir

Commented by infinityaction last updated on 22/Oct/22

thanks sir

thankssir

Answered by ARUNG_Brandon_MBU last updated on 22/Oct/22

S=Σ_(n=0) ^∞ (1/((3n)!))=1+(1/(3!))+(1/(6!))+(1/(9!))+∙∙∙     =(1+(1/(1!))+(1/(2!))+(1/(3!))+(1/(4!))+(1/(5!))+(1/(6!))+(1/(7!))+(1/(8!))+(1/(9!))+∙∙∙)−((1/(1!))+(1/(2!))+(1/(4!))+(1/(5!))+(1/(7!))+(1/(8!))+∙∙∙)      =e−((1/(1!))+(1/(4!))+(1/(7!))+∙∙∙)−((1/(2!))+(1/(5!))+(1/(8!))+∙∙∙)=e−Σ_(n=0) ^∞ (1/((3n+1)!))−Σ_(n=0) ^∞ (1/((3n+2)!))  ⇒e=Σ_(n=0) ^∞ (1/((3n)!))+Σ_(n=0) ^∞ (1/((3n+1)!))+Σ_(n=0) ^∞ (1/((3n+2)!))  e^x =Σ_(n=0) ^∞ (x^(3n) /((3n)!))+Σ_(n=0) ^∞ (x^(3n+1) /((3n+1)!))+Σ_(n=0) ^∞ (x^(3n+2) /((3n+2))) ⇒e^x =f(x)+f ′(x)+f ′′(x)  Σ_(n=0) ^∞ (x^n /((3n)!)) is solution to this equation with f(0)=1 and f ′(0)=0  y_(gh)  : r^2 +r+1=0 ⇒r=−(1/2)±i((√3)/2) ⇒y_(gh) =e^(−(x/( 2))) (αcos(((√3)/2)x)+βsin(((√3)/2)x))  y_p =ke^x =y_p ′=y_p ′′ ⇒e^x =ke^x +ke^x +ke^x  ⇒k=(1/3)  f(x)=y_(gh) +y_p  =e^(−(x/2)) (αcos(((√3)/2)x)+βsin(((√3)/2)x))+(e^x /3)  , f(0)=1 ⇒α+(1/3)=1 ⇒α=(2/3)  f ′(x)=e^(−(x/2)) (((√3)/2)βcos(((√3)/2)x)−((√3)/2)αsin(((√3)/2)x))−(1/2)e^(−(x/2)) (αcos(((√3)/2)x)+βsin(((√3)/2)x))+(e^x /3)  f ′(0)=0 ⇒((√3)/2)β−(α/2)+(1/3)=((√3)/2)β=0 ⇒β=0 ⇒f(x)=e^(−(x/2)) ((2/3)cos(((√3)/2)x))+(e^x /3)  Σ_(n=0) ^∞ (1/((3n)!))=f(1)=(2/(3(√e)))cos(((√3)/2))+(e/3)=(1/3)(e+(2/( (√e)))cos(((√3)/2)))

S=n=01(3n)!=1+13!+16!+19!+=(1+11!+12!+13!+14!+15!+16!+17!+18!+19!+)(11!+12!+14!+15!+17!+18!+)=e(11!+14!+17!+)(12!+15!+18!+)=en=01(3n+1)!n=01(3n+2)!e=n=01(3n)!+n=01(3n+1)!+n=01(3n+2)!ex=n=0x3n(3n)!+n=0x3n+1(3n+1)!+n=0x3n+2(3n+2)ex=f(x)+f(x)+f(x)n=0xn(3n)!issolutiontothisequationwithf(0)=1andf(0)=0ygh:r2+r+1=0r=12±i32ygh=ex2(αcos(32x)+βsin(32x))yp=kex=yp=ypex=kex+kex+kexk=13f(x)=ygh+yp=ex2(αcos(32x)+βsin(32x))+ex3,f(0)=1α+13=1α=23f(x)=ex2(32βcos(32x)32αsin(32x))12ex2(αcos(32x)+βsin(32x))+ex3f(0)=032βα2+13=32β=0β=0f(x)=ex2(23cos(32x))+ex3n=01(3n)!=f(1)=23ecos(32)+e3=13(e+2ecos(32))

Commented by infinityaction last updated on 22/Oct/22

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com