All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 55996 by maxmathsup by imad last updated on 07/Mar/19
find∫π3π2xcosxdx
Commented by maxmathsup by imad last updated on 09/Mar/19
letI=∫π3π2xcosxdxchangementtan(x2)=tgive=∫1312arctan(t)1−t21+t22dt1+t2=4∫131arctant1−t2dtbut∫131arctan(t)1−t2dt=12∫131arctan(t){11−t+11+t}dt=12∫131arctan(t)1−tdt+12∫131arctan(t)1+tdtletf(x)=∫131arctan(xt)1−tdt⇒f′(x)=∫131t(1+x2t2)(1−t)dt=xt=u∫x3xux(1+u2)(1−ux)dux=1x∫x3xu(u2+1)(x−u)duletdecomposeF(u)=u(x−u)(u2+1)F(u)=ax−u+bu+cu2+1a=limu→x(x−u)F(u)=xx2+1limu→+∞uF(u)=0=−a+b⇒b=a⇒F(u)=ax−u+au+cu2+1F(0)=0=ax+c⇒c=−ax=−1x2+1⇒F(u)=x(x2+1)(x−u)+xx2+1u−1x2+1u2+1=xx2+1{1x−u+u−xu2+1}⇒∫F(u)du=xx2+1ln∣x−u∣+x2(x2+1)ln(u2+1)−x2x2+1arctan(u)+c⇒∫x3xF(u)du=xx2+1[ln∣x−u∣+12ln(u2+1)−xarctanu]x3x....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com