Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55996 by maxmathsup by imad last updated on 07/Mar/19

find ∫_(π/3) ^(π/2)    (x/(cosx))dx

findπ3π2xcosxdx

Commented by maxmathsup by imad last updated on 09/Mar/19

let I =∫_(π/3) ^(π/2)   (x/(cosx))dx  changement  tan((x/2))=t  give   =∫_(1/(√3)) ^1       ((2arctan(t))/((1−t^2 )/(1+t^2 ))) ((2dt)/(1+t^2 )) =4∫_(1/(√3)) ^1    ((arctant)/(1−t^2 )) dt  but  ∫_(1/(√3)) ^1   ((arctan(t))/(1−t^2 ))dt =(1/2)∫_(1/(√3)) ^1  arctan(t){(1/(1−t)) +(1/(1+t))}dt  =(1/2) ∫_(1/(√3)) ^1   ((arctan(t))/(1−t))dt +(1/2) ∫_(1/(√3)) ^1   ((arctan(t))/(1+t))dt   let f(x) =∫_(1/(√3)) ^1   ((arctan(xt))/(1−t)) dt ⇒  f^′ (x) = ∫_(1/(√3)) ^1  (t/((1+x^2 t^2 )(1−t)))dt  =_(xt =u)     ∫_(x/(√3)) ^x     (u/(x(1+u^2 )(1−(u/x)))) (du/x)  =(1/x) ∫_(x/(√3)) ^x    (u/((u^2 +1)(x−u))) du  let decompose F(u) =(u/((x−u)(u^2  +1)))  F(u) =(a/(x−u)) +((bu +c)/(u^2  +1))  a =lim_(u→x) (x−u)F(u) =(x/(x^2  +1))  lim_(u→+∞) uF(u) =0 =−a +b ⇒b=a ⇒F(u) =(a/(x−u)) +((au +c)/(u^2  +1))  F(0) =0 =(a/x) +c ⇒c =−(a/x) =−(1/(x^2  +1)) ⇒  F(u) =(x/((x^2 +1)(x−u))) +(((x/(x^2  +1))u −(1/(x^2  +1)))/(u^2  +1))  =(x/(x^2  +1)){(1/(x−u)) +((u−x)/(u^2  +1))} ⇒ ∫ F(u)du =(x/(x^2  +1))ln∣x−u∣  +(x/(2(x^2  +1)))ln(u^2  +1)  −(x^2 /(x^2  +1)) arctan(u) +c ⇒  ∫_(x/(√3)) ^x  F(u)du =(x/(x^2  +1))[ln∣x−u∣+(1/2)ln(u^2  +1)−x arctanu]_(x/(√3)) ^x   ....be continued....

letI=π3π2xcosxdxchangementtan(x2)=tgive=1312arctan(t)1t21+t22dt1+t2=4131arctant1t2dtbut131arctan(t)1t2dt=12131arctan(t){11t+11+t}dt=12131arctan(t)1tdt+12131arctan(t)1+tdtletf(x)=131arctan(xt)1tdtf(x)=131t(1+x2t2)(1t)dt=xt=ux3xux(1+u2)(1ux)dux=1xx3xu(u2+1)(xu)duletdecomposeF(u)=u(xu)(u2+1)F(u)=axu+bu+cu2+1a=limux(xu)F(u)=xx2+1limu+uF(u)=0=a+bb=aF(u)=axu+au+cu2+1F(0)=0=ax+cc=ax=1x2+1F(u)=x(x2+1)(xu)+xx2+1u1x2+1u2+1=xx2+1{1xu+uxu2+1}F(u)du=xx2+1lnxu+x2(x2+1)ln(u2+1)x2x2+1arctan(u)+cx3xF(u)du=xx2+1[lnxu+12ln(u2+1)xarctanu]x3x....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com