Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67235 by prof Abdo imad last updated on 24/Aug/19

find  ∫_(−(π/3)) ^(π/3)  x^2 {cosx−sinx}^3 dx

findπ3π3x2{cosxsinx}3dx

Commented by mathmax by abdo last updated on 01/Sep/19

let I =∫_(−(π/3)) ^(π/3) x^2 {cosx −sinx}^3  and J=∫_(−(π/6)) ^(π/6) x^2 {cosx +sinx}^3 dx  we have I +J =∫_(−(π/3)) ^(π/3) x^2 (cosx −sinx +cosx +sinx)((cosx−sinx)^2   −(cosx−sinx)(cosx +sinx)+(cosx +sinx)^2 }dx  =∫_(−(π/3)) ^(π/3) 2x^2 cosx{1−2cosxsinx −(cos^2 x−sin^2 x) +1+2cosx sinx}dx  =∫_(−(π/3)) ^(π/3)  2x^2 cosx{2 −cos(2x)}dx  =4 ∫_0 ^(π/3) x^2 cosx(2−cos(2x))dx =8 ∫_0 ^(π/3) x^2 cosxdx −4∫_0 ^(π/3)  cosx.cos(2x)dx  by parts ∫_0 ^(π/3)  x^2 cosxdx=[x^2 sinx]_0 ^(π/3) −∫_0 ^(π/3)  2xsinx dx  =−2{[−xcosx]_0 ^(π/3)  −∫_0 ^(π/3)  (−cosx)dx}  =−2{−(π/6) +[sinx]_0 ^(π/3) }=−2{−(π/6)+((√3)/2)} =(π/3)−(√3)  ∫_0 ^(π/3) cosx cos(2x)dx =(1/2)∫_0 ^(π/3) (cos(3x)+cosx)dx=(1/6)[sin(3x)]_0 ^(π/3)   +(1/2)[sinx]_0 ^(π/3)  =(1/2)((√3)/2) =((√3)/4) ⇒ I+J =8((π/3)−(√3))−(√3) =((8π)/3)−9(√3)  I−J =∫_(−(π/3)) ^(π/3) x^2 {(cosx−sinx)^3 −(cosx+sinx)^3 }dx  =∫_(−(π/3)) ^(π/3) x^2 (−2sinx)(1−2cosx sinx +cos(2x) +1+2cosxsinx}dx  =−2∫_(−(π/3)) ^(π/3) x^2 sinx{2+cos(2x)}dx  =0  because the function is odd ⇒I−J =0  ⇒I =J ⇒  ⇒2I =((8π)/3)−9(√3) ⇒I =((4π)/3)−(9/2)(√3)

letI=π3π3x2{cosxsinx}3andJ=π6π6x2{cosx+sinx}3dxwehaveI+J=π3π3x2(cosxsinx+cosx+sinx)((cosxsinx)2(cosxsinx)(cosx+sinx)+(cosx+sinx)2}dx=π3π32x2cosx{12cosxsinx(cos2xsin2x)+1+2cosxsinx}dx=π3π32x2cosx{2cos(2x)}dx=40π3x2cosx(2cos(2x))dx=80π3x2cosxdx40π3cosx.cos(2x)dxbyparts0π3x2cosxdx=[x2sinx]0π30π32xsinxdx=2{[xcosx]0π30π3(cosx)dx}=2{π6+[sinx]0π3}=2{π6+32}=π330π3cosxcos(2x)dx=120π3(cos(3x)+cosx)dx=16[sin(3x)]0π3+12[sinx]0π3=1232=34I+J=8(π33)3=8π393IJ=π3π3x2{(cosxsinx)3(cosx+sinx)3}dx=π3π3x2(2sinx)(12cosxsinx+cos(2x)+1+2cosxsinx}dx=2π3π3x2sinx{2+cos(2x)}dx=0becausethefunctionisoddIJ=0I=J2I=8π393I=4π3923

Terms of Service

Privacy Policy

Contact: info@tinkutara.com