All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67235 by prof Abdo imad last updated on 24/Aug/19
find∫−π3π3x2{cosx−sinx}3dx
Commented by mathmax by abdo last updated on 01/Sep/19
letI=∫−π3π3x2{cosx−sinx}3andJ=∫−π6π6x2{cosx+sinx}3dxwehaveI+J=∫−π3π3x2(cosx−sinx+cosx+sinx)((cosx−sinx)2−(cosx−sinx)(cosx+sinx)+(cosx+sinx)2}dx=∫−π3π32x2cosx{1−2cosxsinx−(cos2x−sin2x)+1+2cosxsinx}dx=∫−π3π32x2cosx{2−cos(2x)}dx=4∫0π3x2cosx(2−cos(2x))dx=8∫0π3x2cosxdx−4∫0π3cosx.cos(2x)dxbyparts∫0π3x2cosxdx=[x2sinx]0π3−∫0π32xsinxdx=−2{[−xcosx]0π3−∫0π3(−cosx)dx}=−2{−π6+[sinx]0π3}=−2{−π6+32}=π3−3∫0π3cosxcos(2x)dx=12∫0π3(cos(3x)+cosx)dx=16[sin(3x)]0π3+12[sinx]0π3=1232=34⇒I+J=8(π3−3)−3=8π3−93I−J=∫−π3π3x2{(cosx−sinx)3−(cosx+sinx)3}dx=∫−π3π3x2(−2sinx)(1−2cosxsinx+cos(2x)+1+2cosxsinx}dx=−2∫−π3π3x2sinx{2+cos(2x)}dx=0becausethefunctionisodd⇒I−J=0⇒I=J⇒⇒2I=8π3−93⇒I=4π3−923
Terms of Service
Privacy Policy
Contact: info@tinkutara.com