All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33328 by prof Abdo imad last updated on 14/Apr/18
find∫π44π(1+1x2)arctanxdx
Commented by math khazana by abdo last updated on 19/Apr/18
letputI=∫π44π(1+1x2)arctanxdx.letintegratebypartsu′=1+1x2andv=arctanxI=[(1−1x)arctanx]π44π−∫π44π(1−1x)dx1+x2=(1−π4)arctan(4π)−(1−4π)−∫π44πdx1+x2+∫π44πdxx(1+x2)but∫π44πdx1+x2=arctan(4π)−arctan(π4)=π2−1−1=π2−2let?decomposeF(x)=1x(1+x2)=ax+bx+c1+x2a=limx→0xF(x)=1limx→+∞xF(x)=0=a+b⇒b=−a=−1F(x)=1x+−x+c1+x2welooktbatc=0⇒F(x)=1x−x1+x2⇒∫π44πdxx(1+x2)=∫π44π(1x−x1+x2)dx=[ln(x)−12ln(1+x2)]π44π=[ln(x1+x2)]π44π=ln(4π1+16π2)−ln(π41+π216)I=(1−π4)(π2−1)+1+4π−π2+ln(4π1+16π2)−ln(π41+π216).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com