Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33328 by prof Abdo imad last updated on 14/Apr/18

find   ∫_(π/4) ^(4/π)   (1+(1/x^2 ))arctanx dx

findπ44π(1+1x2)arctanxdx

Commented by math khazana by abdo last updated on 19/Apr/18

let put I = ∫_(π/4) ^(4/π)   (1+(1/x^2 ))arctanx dx .let integrate by  parts u^′  =1+(1/x^2 )  and v =arctanx  I = [(1−(1/x))arctanx]_(π/4) ^(4/π)   −∫_(π/4) ^(4/π)  (1−(1/x)) (dx/(1+x^2 ))  = (1−(π/4))arctan((4/π)) −(1−(4/π)) −∫_(π/4) ^(4/π)   (dx/(1+x^2 ))  + ∫_(π/4) ^(4/π)       (dx/(x( 1+x^2 )))  but  ∫_(π/4) ^(4/π)    (dx/(1+x^2 )) = arctan( (4/π)) −arctan((π/4))  =(π/2) −1−1=(π/2) −2  let?decompose  F(x) =  (1/(x(1+x^2 ))) = (a/x)  +((bx +c)/(1+x^2 ))  a =lim_(x→0) x F(x) = 1  lim_(x→+∞) x F(x) =0 = a +b ⇒b=−a =−1  F(x) = (1/x)  +((−x +c)/(1+x^2 ))    we look tbat c=0 ⇒  F(x) = (1/x)  −(x/(1+x^2 )) ⇒  ∫_(π/4) ^(4/π)     (dx/(x(1+x^2 ))) = ∫_(π/4) ^(4/π)  ((1/x) −(x/(1+x^2 )))dx  =[ ln(x)−(1/2)ln(1+x^2 )]_(π/4) ^(4/π)  =[ln((x/(√(1+x^2 ))))]_(π/4) ^(4/π)   = ln(  (4/(π(√(1+((16)/π^2 )))))) −ln(   (π/(4(√(1+(π^2 /(16)))))))  I =(1−(π/4))((π/2) −1) +1 +(4/π) −(π/2)   +ln( (4/(π(√(1+((16)/π^2 )))))) −ln(  (π/(4(√(1+(π^2 /(16))))))) .

letputI=π44π(1+1x2)arctanxdx.letintegratebypartsu=1+1x2andv=arctanxI=[(11x)arctanx]π44ππ44π(11x)dx1+x2=(1π4)arctan(4π)(14π)π44πdx1+x2+π44πdxx(1+x2)butπ44πdx1+x2=arctan(4π)arctan(π4)=π211=π22let?decomposeF(x)=1x(1+x2)=ax+bx+c1+x2a=limx0xF(x)=1limx+xF(x)=0=a+bb=a=1F(x)=1x+x+c1+x2welooktbatc=0F(x)=1xx1+x2π44πdxx(1+x2)=π44π(1xx1+x2)dx=[ln(x)12ln(1+x2)]π44π=[ln(x1+x2)]π44π=ln(4π1+16π2)ln(π41+π216)I=(1π4)(π21)+1+4ππ2+ln(4π1+16π2)ln(π41+π216).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com