Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28882 by abdo imad last updated on 31/Jan/18

find ∫_(−π) ^π    ((2dt)/(2+sint +cost)) .

findππ2dt2+sint+cost.

Commented by abdo imad last updated on 02/Feb/18

let use the ch. e^(it) =z  I=  ∫_(∣z∣=1)          (2/(2 +((z−z^− )/(2i)) +((z+z^(−1) )/2))) (dz/(iz))  I= ∫_(∣z∣=1)                (1/(iz( 1+ ((z−z^(−1) )/(4i)) +((z+z^(−1) )/4))))dz  I= ∫_(∣z∣=1)                (dz/(z(i + ((z−z^(−1) )/4) +((i(z+z^(−1) ))/4))))  I= ∫_(∣z∣=1)        ((4dz)/(z(4i +z−z^(−1)  +iz +iz^(−1) )))  I= ∫_(∣z∣=1)        ((4dz)/(4iz +z^2 −1 +iz^2 +i))  = ∫_(∣z∣=1)       ((4dz)/((1+i)z^2  +4iz −1+i)) let introduce the complex  function w(z)=   (4/((1+i)z^2  +4iz−1+i))   poles of w?  Δ^′ =(2i)^2  −(1+i)(−1+i)=−4 −(−2) =−2 =(i(√2))^2   z_1 =((−2i +i(√2))/(1+i))   and z_2 =((−2i−i(√2))/(1+i))  ∣z_1 ∣= ((∣−2i +i(√2)∣)/(∣1+i∣)) =((2−(√2))/(√2))=(√2) −1 and ∣z_1 ∣−1=(√2)−2<0  so ∣z_1 ∣<1

letusethech.eit=zI=z∣=122+zz2i+z+z12dzizI=z∣=11iz(1+zz14i+z+z14)dzI=z∣=1dzz(i+zz14+i(z+z1)4)I=z∣=14dzz(4i+zz1+iz+iz1)I=z∣=14dz4iz+z21+iz2+i=z∣=14dz(1+i)z2+4iz1+iletintroducethecomplexfunctionw(z)=4(1+i)z2+4iz1+ipolesofw?Δ=(2i)2(1+i)(1+i)=4(2)=2=(i2)2z1=2i+i21+iandz2=2ii21+iz1∣=2i+i21+i=222=21andz11=22<0soz1∣<1

Commented by abdo imad last updated on 02/Feb/18

∣z_2 ∣= ((2+(√2))/(√2)) =(√2)+1⇒∣z_2 ∣−1=(√2)>0( to eliminate frm residus)  ∫_(∣z∣=1) w(z)dz=2iπRes(w,z_1 ) but   w(z)=     (4/((1+i)(z−z_1 )(z−z_2 )))⇒  Res(w,z_1 )=  (4/((1+i)(z_1 −z_2 )))=   (4/((1+i)((2i(√2))/(1+i)))) = (2/(i(√2))) =((√2)/i)  ∫_(∣z∣=1) w(z)dz=2iπ.((√2)/i) = 2π(√2) .⇒  I=2π(√2) .

z2∣=2+22=2+1⇒∣z21=2>0(toeliminatefrmresidus)z∣=1w(z)dz=2iπRes(w,z1)butw(z)=4(1+i)(zz1)(zz2)Res(w,z1)=4(1+i)(z1z2)=4(1+i)2i21+i=2i2=2iz∣=1w(z)dz=2iπ.2i=2π2.I=2π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com