Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33713 by abdo imad last updated on 22/Apr/18

find tbe value of Σ_(n=2) ^∞  ((n^2 −n+1)/((n−1)^2 (n+1)^2 )) .

findtbevalueofn=2n2n+1(n1)2(n+1)2.

Commented by prof Abdo imad last updated on 26/Apr/18

let put S_n =Σ_(k=2) ^n   ((n^2 −n+1)/((n−1)^2 (n+1)^2 )) let?drcompose  F(x)= ((x^2 −x +1)/((x−1)^2 (x+1)^2 ))  F(x)= (a/(x−1)) +(b/((x−1)^2 )) +(b/(x+1))  +(c/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)= (1/4)  c =lim_(x→−1) (x+1)^2 F(x)= (3/4) ⇒  F(x)= (a/(x−1)) +(1/(4(x−1)^2 )) +(b/(x+1)) +(3/(4(x+1)^2 ))  F(0)=1 = −a +(1/4)+b +(3/4) = 1+b−a ⇒b=a ⇒  F(x)= (a/(x−1)) + (1/(4(x−1)^2 )) +(a/(x+1))  +(3/(4(x+1)^2 ))  =((2ax)/(x^2 −1))  +(1/(4(x−1)^2 )) + (3/(4(x+1)^2 ))  lim_(x→+∞) xF(x)=0 = 2a ⇒a=0 ⇒  F(x)= (1/(4(x−1)^2 )) + (3/(4(x+1)^2 )) ⇒  S_n = (1/4) Σ_(k=2) ^n  (1/((k−1)^2 )) +(3/4) Σ_(k=2) ^n  (1/((k+1)^2 )) but  Σ_(k=2) ^n  (1/((k−1)^2 )) = Σ_(k=1) ^(n−1)  (1/k^2 ) =ξ_(n−1) (2)→ξ(2)=(π^2 /6)  Σ_(k=2) ^n   (1/((k+1)^2 )) = Σ_(k=3) ^(n+1)    (1/k^2 ) = Σ_(k=1) ^(n+1)  (1/k^2 ) −1−(1/4)  =ξ_(n+1) (2) −(3/4) →ξ(2)−(3/4) =(π^2 /6) −(3/4)  lim_(n→+∞)  S_n =(1/4)(π^2 /6) +(3/4)( (π^2 /6) −(3/4))  =(π^2 /(24)) + ((3π^2 )/(24)) −(9/(16)) = (π^2 /6) −(9/(16))  .

letputSn=k=2nn2n+1(n1)2(n+1)2let?drcomposeF(x)=x2x+1(x1)2(x+1)2F(x)=ax1+b(x1)2+bx+1+c(x+1)2b=limx1(x1)2F(x)=14c=limx1(x+1)2F(x)=34F(x)=ax1+14(x1)2+bx+1+34(x+1)2F(0)=1=a+14+b+34=1+bab=aF(x)=ax1+14(x1)2+ax+1+34(x+1)2=2axx21+14(x1)2+34(x+1)2limx+xF(x)=0=2aa=0F(x)=14(x1)2+34(x+1)2Sn=14k=2n1(k1)2+34k=2n1(k+1)2butk=2n1(k1)2=k=1n11k2=ξn1(2)ξ(2)=π26k=2n1(k+1)2=k=3n+11k2=k=1n+11k2114=ξn+1(2)34ξ(2)34=π2634limn+Sn=14π26+34(π2634)=π224+3π224916=π26916.

Commented by sma3l2996 last updated on 26/Apr/18

I think you have an error on lines 14 and 15  −1−(1/4)=((−5)/4)

Ithinkyouhaveanerroronlines14and15114=54

Commented by prof Abdo imad last updated on 26/Apr/18

yes yes you are right i will correct the answer  thank you so much sir sma3l....

yesyesyouarerightiwillcorrecttheanswerthankyousomuchsirsma3l....

Commented by prof Abdo imad last updated on 26/Apr/18

error from line 15Σ_(k=2) ^n  (1/((k+1)^2 )) =ξ_(n+1) (2)−(5/4)  →_(n→+∞)  ξ(2)−(5/4) =(π^2 /6) −(5/4) ⇒  lim_(n→+∞)  S_n = (1/4) (π^2 /6) +(3/4)( (π^2 /6) −(5/4))  =(π^2 /(24)) +((3π^2 )/(24)) −((15)/(16)) = (π^2 /6) −((15)/(16))  ★lim S_n =(π^2 /6) −((15)/(16))★

errorfromline15k=2n1(k+1)2=ξn+1(2)54n+ξ(2)54=π2654limn+Sn=14π26+34(π2654)=π224+3π2241516=π261516limSn=π261516

Answered by sma3l2996 last updated on 23/Apr/18

A_n =Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=Σ_(n=2) ^∞ ((a/(n−1))+(b/((n−1)^2 ))+(c/(n+1))+(d/((n+1)^2 )))  with  a=c=0  ;  b=(1/4)  ;  d=(3/4)    Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=(1/4)Σ_(n=2) ^∞ ((1/((n−1)^2 ))+(3/((n+1)^2 )))  =(1/4)Σ_(n=2) ^∞ (1/((n−1)^2 ))+(3/4)Σ_(n=2) ^∞ (1/((n+1)^2 ))  let  m=n−1   and   k=n+1  so  Σ_(n=2) ^∞ ((n^2 −n+1)/((n−1)^2 (n+1)^2 ))=(1/4)Σ_(m=1) ^∞ (1/m^2 )+(3/4)Σ_(k=3) ^∞ (1/k^2 )  =(1/4)ξ(2)+(3/4)(ξ(2)−((1/1^2 )+(1/2^2 )))=ξ(2)−(5/4) with  (ξ(x)  is zeta function)  =(π^2 /6)−(5/4)

An=n=2n2n+1(n1)2(n+1)2=n=2(an1+b(n1)2+cn+1+d(n+1)2)witha=c=0;b=14;d=34n=2n2n+1(n1)2(n+1)2=14n=2(1(n1)2+3(n+1)2)=14n=21(n1)2+34n=21(n+1)2letm=n1andk=n+1son=2n2n+1(n1)2(n+1)2=14m=11m2+34k=31k2=14ξ(2)+34(ξ(2)(112+122))=ξ(2)54with(ξ(x)iszetafunction)=π2654

Commented by prof Abdo imad last updated on 26/Apr/18

you have commited a error of calculus sir sma3l..

youhavecommitedaerrorofcalculussirsma3l..

Commented by sma3l2996 last updated on 26/Apr/18

(1/4)ξ(2)+(3/4)(ξ(2)−(5/4))=ξ(2)−((15)/(16))  =(π^2 /6)−((15)/(16))

14ξ(2)+34(ξ(2)54)=ξ(2)1516=π261516

Terms of Service

Privacy Policy

Contact: info@tinkutara.com