Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102369 by bobhans last updated on 08/Jul/20

find the area bounded inner the curve  r = 4−2cos θ and outer the curve r = 6+2cos θ

findtheareaboundedinnerthecurver=42cosθandouterthecurver=6+2cosθ

Answered by Ar Brandon last updated on 08/Jul/20

Area , A=∫_0 ^(2π) ∫_(4−2cosθ) ^(6+2cosθ) rdrdθ=∫_0 ^(2π) [(r^2 /2)]_(4−2cosθ) ^(6+2cosθ) dθ  ⇒A=(1/2)∫_0 ^(2π) {(6+2cosθ)^2 −(4−2cosθ)^2 }dθ           =(1/2)∫_0 ^(2π) {(36+24cosθ+4cos^2 θ)−(16−16cosθ+4cos^2 θ)}dθ           =(1/2)∫_0 ^(2π) (20+40cosθ)dθ=[((20θ+40sinθ)/2)]_0 ^(2π)            =20π square units    Don′t really know if I′ve done it in the right way.  Please let me know what you think.

Area,A=02π42cosθ6+2cosθrdrdθ=02π[r22]42cosθ6+2cosθdθA=1202π{(6+2cosθ)2(42cosθ)2}dθ=1202π{(36+24cosθ+4cos2θ)(1616cosθ+4cos2θ)}dθ=1202π(20+40cosθ)dθ=[20θ+40sinθ2]02π=20πsquareunitsDontreallyknowifIvedoneitintherightway.Pleaseletmeknowwhatyouthink.

Commented by mr W last updated on 09/Jul/20

you are right. i misread, because this  is how the question is displayed on  my device:

youareright.imisread,becausethisishowthequestionisdisplayedonmydevice:

Commented by mr W last updated on 08/Jul/20

A=∫_0 ^(2π) ∫_(4−2cosθ) ^6 rdrdθ

A=02π42cosθ6rdrdθ

Commented by Ar Brandon last updated on 08/Jul/20

Why the 6 at the upper bound, mr W ?

Commented by mr W last updated on 09/Jul/20

Commented by mr W last updated on 09/Jul/20

i misinterpreted as from curve  r=4−2 cos θ to curve r=6.

imisinterpretedasfromcurver=42cosθtocurver=6.

Commented by bobhans last updated on 09/Jul/20

sir why ∫_0 ^(2π)  ? i think ∫_0 ^π  ?

sirwhy2π0?ithinkπ0?

Commented by bobhans last updated on 09/Jul/20

Commented by Ar Brandon last updated on 09/Jul/20

OK Sir

Commented by Ar Brandon last updated on 09/Jul/20

You′re heading somewhere mr Bobhans. I think you′re  making a point there. Let′s see;  Mathematically inner the curve 4−2cosθ implies  4−2cosθ<r  and outer the curve 6+2cosθ implies  6+2cosθ>r  Therefore at points of intersection r=r  ⇒4−2cosθ=6+2cosθ ⇒cosθ=((−1)/2)  ⇒θ_1 =(4/3)π , θ_2 =(2/3)π

YoureheadingsomewheremrBobhans.Ithinkyouremakingapointthere.Letssee;Mathematicallyinnerthecurve42cosθimplies42cosθ<randouterthecurve6+2cosθimplies6+2cosθ>rThereforeatpointsofintersectionr=r42cosθ=6+2cosθcosθ=12θ1=43π,θ2=23π

Commented by Ar Brandon last updated on 09/Jul/20

And 4−2cosθ<r<6+2cosθ

And42cosθ<r<6+2cosθ

Commented by bemath last updated on 09/Jul/20

Commented by 1549442205 last updated on 09/Jul/20

If the figure is bounded by   { ((r=4−2cosθ)),((r=6)) :}  then  S=∫_0 ^π [6^2 −(4−2cosθ)^2 ]dθ  =∫_0 ^π (20+16cosθ−4cos^2 θ)dθ  =(20θ+16sinθ)∣_0 ^π −2∫_0 ^π (1+cos2θ)dθ  =20𝛑−(2𝛉+sin2𝛉)∣_0 ^𝛑 =18𝛑  If the figure is bounded  { ((r=4−2cosθ)),((r=6+2cosθ)) :}then  S=∫_0 ^((2π)/3) [(6+2cosθ)^2 −(4−2cosθ)^2 ]dθ  =∫_0 ^((2π)/3) (20+40cosθdθ=(20θ+40sinθ)∣_0 ^((2π)/3)   =20×((2𝛑)/3)+40×((√3)/2)=((40𝛑)/3)−20(√(3 )) ≈76.53

Ifthefigureisboundedby{r=42cosθr=6thenS=0π[62(42cosθ)2]dθ=0π(20+16cosθ4cos2θ)dθ=(20θ+16sinθ)0π20π(1+cos2θ)dθ=20π(2θ+sin2θ)0π=18πIfthefigureisbounded{r=42cosθr=6+2cosθthenS=02π3[(6+2cosθ)2(42cosθ)2]dθ=02π3(20+40cosθdθ=(20θ+40sinθ)02π3=20×2π3+40×32=40π320376.53

Commented by 1549442205 last updated on 09/Jul/20

Answered by Ar Brandon last updated on 09/Jul/20

  Area , A=∫_((2π)/3) ^((4π)/3) ∫_(4−2cosθ) ^(6+2cosθ) rdrdθ=∫_((2π)/3) ^((4π)/3) [(r^2 /2)]_(4−2cosθ) ^(6+2cosθ) dθ  ⇒A=(1/2)∫_((2π)/3) ^((4π)/3) {(6+2cosθ)^2 −(4−2cosθ)^2 }dθ           =(1/2)∫_((2π)/3) ^((4π)/3) {(36+24cosθ+4cos^2 θ)−(16−16cosθ+4cos^2 θ)}dθ           =(1/2)∫_((2π)/3) ^((4π)/3) (20+40cosθ)dθ=[((20θ+40sinθ)/2)]_((2π)/3) ^((4π)/3)            =(1/2)[20×((4π)/3)−40×((√3)/2)−20×((2π)/3)+40×((√3)/2)]           =((20)/3)π square units

Area,A=2π34π342cosθ6+2cosθrdrdθ=2π34π3[r22]42cosθ6+2cosθdθA=122π34π3{(6+2cosθ)2(42cosθ)2}dθ=122π34π3{(36+24cosθ+4cos2θ)(1616cosθ+4cos2θ)}dθ=122π34π3(20+40cosθ)dθ=[20θ+40sinθ2]2π34π3=12[20×4π340×3220×2π3+40×32]=203πsquareunits

Answered by bemath last updated on 09/Jul/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com