Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 89867 by M±th+et£s last updated on 19/Apr/20

find the integration  ∫ln⌊x⌋ dx      ; x>2

findtheintegrationlnxdx;x>2

Commented by ~blr237~ last updated on 20/Apr/20

Answered by mr W last updated on 20/Apr/20

let x=n+f  dx=df  ∫ln ⌊x⌋dx=ln n ∫df=(ln n)f+C  =(ln ⌊x⌋)(x−⌊x⌋)+C

letx=n+fdx=dflnxdx=lnndf=(lnn)f+C=(lnx)(xx)+C

Commented by M±th+et£s last updated on 20/Apr/20

sir why ∫ln⌊x⌋dx=ln(n)∫df  and how  did you get ln(⌊x⌋)(x−⌊x⌋)

sirwhylnxdx=ln(n)dfandhowdidyougetln(x)(xx)

Commented by mr W last updated on 21/Apr/20

x=n+f with n=⌊x⌋, f=x−⌊x⌋  in x=n+f, n is constant, therefore  dx=df  ∫ln ⌊x⌋dx=∫(ln n)df=ln (n)∫df  =ln (n)f+C  =(ln ⌊x⌋)(x−⌊x⌋)+C

x=n+fwithn=x,f=xxinx=n+f,nisconstant,thereforedx=dflnxdx=(lnn)df=ln(n)df=ln(n)f+C=(lnx)(xx)+C

Commented by M±th+et£s last updated on 21/Apr/20

thank you for explaing that for me

thankyouforexplaingthatforme

Answered by M±th+et£s last updated on 22/Apr/20

i try a lot and i get that  ln[x]dx=ln(2)    x∈(2,3)  f(x)=ln[x] x∈(n,n+1)  ∫ln[x]dx=Σ_(k=2) ^(n−1) ln(x) + ∫_(n=[x]) ^x ln[x]dx  Σ_(k=2) ^(n−1) ln(k)+ln(n)(x−[x])+c

itryalotandigetthatln[x]dx=ln(2)x(2,3)f(x)=ln[x]x(n,n+1)ln[x]dx=n1k=2ln(x)+n=[x]xln[x]dxn1k=2ln(k)+ln(n)(x[x])+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com