Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 153870 by physicstutes last updated on 11/Sep/21

find the minimum and maximum value  of (5/(f(θ)+3)) where f(θ)=8cos θ−15 sin θ

findtheminimumandmaximumvalueof5f(θ)+3wheref(θ)=8cosθ15sinθ

Commented by mr W last updated on 12/Sep/21

there are no minimum and no  maximum. there are only local   minimum and local maximum.

therearenominimumandnomaximum.thereareonlylocalminimumandlocalmaximum.

Commented by physicstutes last updated on 12/Sep/21

why sir?

Commented by mr W last updated on 12/Sep/21

f(θ)=8cos θ−15 sin θ=17 cos (θ+α)  −17≤f(θ)≤17  that means f(θ) can be −3,  when f(θ)→−3^− , (5/(f(θ)+3))→−∞ ⇒no minimum  when f(θ)→−3^+ , (5/(f(θ)+3))→+∞ ⇒no maximum

f(θ)=8cosθ15sinθ=17cos(θ+α)17f(θ)17thatmeansf(θ)canbe3,whenf(θ)3,5f(θ)+3nominimumwhenf(θ)3+,5f(θ)+3+nomaximum

Answered by liberty last updated on 11/Sep/21

g(θ)=(5/(f(θ)+3))=(5/(17cos (θ−ϑ)+3))  ⇒17 cos (θ−ϑ)+3 = (5/(g(θ)))  ⇒17cos (θ−ϑ)=(5/(g(θ)))−3  we know that −17≤17cos (θ−ϑ)≤17  −17≤(5/(g(θ)))−3≤17  −14≤(5/(g(θ)))≤20  −((14)/5)≤(1/(g(θ)))≤4  (1/4)≤g(θ)<∞   minimum = (1/4)  has no maximum

g(θ)=5f(θ)+3=517cos(θϑ)+317cos(θϑ)+3=5g(θ)17cos(θϑ)=5g(θ)3weknowthat1717cos(θϑ)17175g(θ)317145g(θ)201451g(θ)414g(θ)<minimum=14hasnomaximum

Terms of Service

Privacy Policy

Contact: info@tinkutara.com