All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 196565 by mokys last updated on 27/Aug/23
findthepowerseriesexponitionoff(z)=2z+1z2−3z+2aboutzo=i
Answered by aleks041103 last updated on 27/Aug/23
2z+1z2−3z+2=2z+1(z−2)(z−1)=Az−1+Bz−2⇒A(z−2)+B(z−1)=2z+1⇒A+B=2&2A+B=−1⇒A=−3,B=5⇒f(z)=5z−2−3z−1z=w+z0=w+i⇒f=5w−(2−i)−3w−(1−i)toexpandinzaroundz0istoexpandinwaround0.−−−−−−−−−−−−−−−−−−−−Examine:Expand1w−s,w,s∈C1)for∣w∣<∣s∣:1w−s=−1s11−ws=−1s(1+ws+(ws)2+...)⇒1w−s=∑∞k=0(−1sk+1)wk,∣w∣<∣s∣2)for∣w∣>∣s∣:1w−s=1w11−sw=1w(1+sw+(sw)2+...)⇒1w−s=∑∞k=1(sk−1)w−k,∣w∣>∣s∣−−−−−−−−−−−−−−−−−−−−Nowlet∣s∣>∣v∣andthen:aw−s+bw−v={∑∞k=0(−ask+1−bvk+1)wk,∣w∣<∣v∣<∣s∣∑∞k=1bvk−1w−k+∑∞k=0(−ask+1)wk,∣v∣<∣w∣<∣s∣∑∞k=1(ask−1+bvk−1)w−k,∣v∣<∣s∣<∣w∣Nowjustreplaces=2−i,a=5,v=1−i,b=−3andw=z−iandyougetyouranswer
Commented by mokys last updated on 27/Aug/23
ithinkv=1+i
Commented by aleks041103 last updated on 27/Aug/23
inthiscaseitis.z=w+z0=w+iz−1=w+i−1=w−(1−i)=w−v⇒v=1−i
Terms of Service
Privacy Policy
Contact: info@tinkutara.com