Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196565 by mokys last updated on 27/Aug/23

find the power series exponition of   f(z)=((2z+1)/(z^2 −3z+2))  about z_o  = i

findthepowerseriesexponitionoff(z)=2z+1z23z+2aboutzo=i

Answered by aleks041103 last updated on 27/Aug/23

((2z+1)/(z^2 −3z+2))=((2z+1)/((z−2)(z−1)))=(A/(z−1))+(B/(z−2))  ⇒A(z−2)+B(z−1)=2z+1  ⇒A+B=2 & 2A+B=−1  ⇒A=−3,B=5  ⇒f(z)=(5/(z−2))−(3/(z−1))  z=w+z_0 =w+i  ⇒f=(5/(w−(2−i)))−(3/(w−(1−i)))  to expand in z around z_0  is to expand in  w around 0.  −−−−−−−−−−−−−−−−−−−−  Examine: Expand  (1/(w−s)), w,s∈C  1) for ∣w∣<∣s∣:  (1/(w−s))=−(1/s) (1/(1−(w/s)))=−(1/s)(1+(w/s)+((w/s))^2 +...)  ⇒(1/(w−s))=Σ_(k=0) ^∞ (−(1/s^(k+1) ))w^k , ∣w∣<∣s∣  2) for ∣w∣>∣s∣:  (1/(w−s))=(1/w) (1/(1−(s/w)))=(1/w)(1+(s/w)+((s/w))^2 +...)  ⇒(1/(w−s))=Σ_(k=1) ^∞ (s^(k−1) )w^(−k) , ∣w∣>∣s∣  −−−−−−−−−−−−−−−−−−−−  Now let ∣s∣>∣v∣ and then:  (a/(w−s))+(b/(w−v))= { ((Σ_(k=0) ^∞ (−(a/s^(k+1) )−(b/v^(k+1) ))w^k , ∣w∣<∣v∣<∣s∣)),((Σ_(k=1) ^∞ bv^(k−1) w^(−k) +Σ_(k=0) ^∞ (−(a/s^(k+1) ))w^k , ∣v∣<∣w∣<∣s∣)),((Σ_(k=1) ^∞ (as^(k−1) +bv^(k−1) )w^(−k)  , ∣v∣<∣s∣<∣w∣)) :}  Now just replace  s=2−i, a=5, v=1−i, b=−3  and  w=z−i  and you get your answer

2z+1z23z+2=2z+1(z2)(z1)=Az1+Bz2A(z2)+B(z1)=2z+1A+B=2&2A+B=1A=3,B=5f(z)=5z23z1z=w+z0=w+if=5w(2i)3w(1i)toexpandinzaroundz0istoexpandinwaround0.Examine:Expand1ws,w,sC1)forw∣<∣s∣:1ws=1s11ws=1s(1+ws+(ws)2+...)1ws=k=0(1sk+1)wk,w∣<∣s2)forw∣>∣s∣:1ws=1w11sw=1w(1+sw+(sw)2+...)1ws=k=1(sk1)wk,w∣>∣sNowlets∣>∣vandthen:aws+bwv={k=0(ask+1bvk+1)wk,w∣<∣v∣<∣sk=1bvk1wk+k=0(ask+1)wk,v∣<∣w∣<∣sk=1(ask1+bvk1)wk,v∣<∣s∣<∣wNowjustreplaces=2i,a=5,v=1i,b=3andw=ziandyougetyouranswer

Commented by mokys last updated on 27/Aug/23

i think v = 1+i

ithinkv=1+i

Commented by aleks041103 last updated on 27/Aug/23

in this case it is.  z=w+z_0 =w+i  z−1=w+i−1=w−(1−i)=w−v  ⇒v=1−i

inthiscaseitis.z=w+z0=w+iz1=w+i1=w(1i)=wvv=1i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com