Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138628 by mohammad17 last updated on 15/Apr/21

find the region in which the function     f(z)=((log(z−2i))/(z^2 +1)) is analytic ?    help me sir

findtheregioninwhichthefunctionf(z)=log(z2i)z2+1isanalytic?helpmesir

Commented by mohammad17 last updated on 16/Apr/21

?????

?????

Answered by mathmax by abdo last updated on 17/Apr/21

let z=x+iy ⇒f(z)=f(x+iy) =u(x,y)+iv(x,y)  f(x+iy)=((log(x+iy−2i))/((x+iy)^2  +1)) =((log(x+i(y−2)))/(x^2  +2ixy−y^2  +1))  =((log((√(x^2 +(y−2)^2 ))e^(iarctan(((y−2)/x))) ))/(x^2 −y^2  +1+2ixy)) =(1/2)((log(x^2  +(y−2)^2 ))/(x^2 −y^2  +1 +2ixy))  +((iarctan(((y−2)/x)))/(x^2 −y^2  +1+2ixy))  =((log(x^2  +(y−2)^2 )(x^2 −y^2  +1−2ixy))/((x^2 −y^2 +1)^2  +4x^2 y^2 ))  +i ((arctan(((y−2)/x))(x^2 −y^2  +1−2ixy))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  =(((x^2 −y^2 +1)log(x^2  +(y−2)^2 ))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))−2i((xylog(x^2  +(y−2)^2 ))/((x^2 −y^2 +1)^2  +4x^2 y^2 ))  +i(((x^2 −y^2 +1)arctan(((y−2)/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 )) +((2xyarctan(((y−2))/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  ⇒u(x,y)=(((x^2 −y^2 +1)log(x^2  +(y−2)^2 )+2xyarctan(((y−2)/x)))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  and v(x,y)=(((x^2 −y^2 +1)arctan(((y−2)/x))−2xylog(x^2  +(y−2)^2 ))/((x^2 −y^2  +1)^2  +4x^2 y^2 ))  after we apply cauchy conditions (∂u/∂x)=(∂v/∂y) and (∂u/∂y)=−(∂v/∂x)  .....

letz=x+iyf(z)=f(x+iy)=u(x,y)+iv(x,y)f(x+iy)=log(x+iy2i)(x+iy)2+1=log(x+i(y2))x2+2ixyy2+1=log(x2+(y2)2eiarctan(y2x))x2y2+1+2ixy=12log(x2+(y2)2)x2y2+1+2ixy+iarctan(y2x)x2y2+1+2ixy=log(x2+(y2)2)(x2y2+12ixy)(x2y2+1)2+4x2y2+iarctan(y2x)(x2y2+12ixy)(x2y2+1)2+4x2y2=(x2y2+1)log(x2+(y2)2)(x2y2+1)2+4x2y22ixylog(x2+(y2)2)(x2y2+1)2+4x2y2+i(x2y2+1)arctan(y2x)(x2y2+1)2+4x2y2+2xyarctan(y2)x)(x2y2+1)2+4x2y2u(x,y)=(x2y2+1)log(x2+(y2)2)+2xyarctan(y2x)(x2y2+1)2+4x2y2andv(x,y)=(x2y2+1)arctan(y2x)2xylog(x2+(y2)2)(x2y2+1)2+4x2y2afterweapplycauchyconditionsux=vyanduy=vx.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com