All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32352 by abdo imad last updated on 23/Mar/18
findthevalueof∫01arctan(1−x2)dx
Commented by abdo imad last updated on 26/Mar/18
ch.x=sint⇒I=∫0π2arctan(cost)costdtletintegratebypartsu=arctan(cost)andv′=costI=[sintarctan(cost)]0π2−∫0π2−sint1+cos2tsintdt=∫0π21−cos2t1+cos2tdt=∫0π21−1+cos(2t)21+1+cos(2t)2dt=∫0π21−cos(2t)3+cos(2t)dt=2t=u∫0π1−cosu3+cosudu2=12∫0π1−cosu3+cosuduch.tan(u2)=xgiveI=12∫0∞1−1−x21+x23+1−x21+x22dx1+x2=∫0∞1+x2−1+x2(3+3x2+1−x2)(1+x2)dx=∫0∞2x2(4+2x2)(1+x2)dx=∫0∞x2(x2+1)(x2+2)dx=12∫−∞+∞x2(x2+1)(x2+2)dxletconsiderφ(z)=z2(z2+1)(z2+2)thepolesofφarei,−i,i2,−i2andallaresimples∫−∞+∞φ(z)dz=2iπ(Res(φ,i)+Res(φ,i2))φ(z)=z2(z−i)(z+i)(z−i2)(z+i2)Res(φ,i)=limz→i(z−i)φ(z)=−1(2i)(1)=−12iRes(φ,i2)=limz→i2(z−i2)φ(z)=−2(−1)(2i2)=1i2∫−∞+∞φ(z)dz=2iπ(−12i+1i2)=−π+2π2=−π+π2=(2−1)π.
I=12∫−∞+∞φ(z)dz=π2(2−1).
Answered by sma3l2996 last updated on 25/Mar/18
I=∫01arctan(1−x2)dxbypartsu=arctan(1−x2)⇒u′=−x(2−x2)1−x2v′=1⇒v=xI=[xarctan(1−x2)]01+∫01x2(2−x2)1−x2dx=−∫012−x2−2(2−x2)1−x2dx=2∫01dx(2−x2)1−x2−∫01dx1−x2letx=sint⇒dx=costdtI=2∫0π/2dt2−sin2t−π2u=tant⇒dt=du1+u22−sin2t=2−tan2t1+tan2t=2+tan2t1+tan2t=2+u21+u2I=2∫0∞du2+u2−π2=∫0∞du1+(u2)2−π2=2[arctan(u2)]0∞−π2I=π22−π2=π2(2−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com