Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32352 by abdo imad last updated on 23/Mar/18

find the value of  ∫_0 ^1  arctan((√(1−x^2 )))dx

findthevalueof01arctan(1x2)dx

Commented by abdo imad last updated on 26/Mar/18

ch.x=sint ⇒ I = ∫_0 ^(π/2)  arctan(cost) cost dt let integrate  by parts u=arctan(cost) and v^′  =cost  I = [sint arctan(cost)]_0 ^(π/2)   −∫_0 ^(π/2)     ((−sint)/(1+cos^2 t)) sint dt  = ∫_0 ^(π/2)   ((1−cos^2 t)/(1+cos^2 t)) dt  = ∫_0 ^(π/2)    ((1−((1+cos(2t))/2))/(1 +((1+cos(2t))/2))) dt  = ∫_0 ^(π/2)    ((1−cos(2t))/(3+cos(2t)))dt  =_(2t=u)  ∫_0 ^π    ((1−cosu)/(3 +cosu)) (du/2)  =(1/2) ∫_0 ^π    ((1−cosu)/(3 +cosu))du  ch.tan((u/2))=x give  I = (1/2) ∫_0 ^∞    ((1− ((1−x^2 )/(1+x^2 )))/(3 +((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 )) =∫_0 ^∞      ((1+x^2 −1+x^2 )/((3 +3x^2  +1−x^2 )(1+x^2 ))) dx  =∫_0 ^∞      ((2x^2 )/((4+2x^2 )(1+x^2 )))dx = ∫_0 ^∞    (x^2 /((x^2  +1)(x^2  +2)))dx  =(1/2) ∫_(−∞) ^(+∞)     (x^2 /((x^2 +1)(x^2  +2)))dx let consider  ϕ(z) =  (z^2 /((z^2  +1)(z^2  +2))) the poles of ϕ are  i ,−i, i(√(2 )) ,−i(√2)  and all are simples  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,i(√2)))    ϕ(z) =  (z^2 /((z−i)(z+i)(z−i(√2))(z +i(√2))))  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z)= ((−1)/((2i) (1))) =((−1)/(2i))  Res(ϕ,i(√2)) =lim_(z→i(√2)) (z−i(√2))ϕ(z) =  ((−2)/((−1)(2i(√2)))) =(1/(i(√2)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( ((−1)/(2i)) +(1/(i(√2)))) = −π   +((2π)/(√2)) =−π +π(√2)  =((√2) −1)π .

ch.x=sintI=0π2arctan(cost)costdtletintegratebypartsu=arctan(cost)andv=costI=[sintarctan(cost)]0π20π2sint1+cos2tsintdt=0π21cos2t1+cos2tdt=0π211+cos(2t)21+1+cos(2t)2dt=0π21cos(2t)3+cos(2t)dt=2t=u0π1cosu3+cosudu2=120π1cosu3+cosuduch.tan(u2)=xgiveI=12011x21+x23+1x21+x22dx1+x2=01+x21+x2(3+3x2+1x2)(1+x2)dx=02x2(4+2x2)(1+x2)dx=0x2(x2+1)(x2+2)dx=12+x2(x2+1)(x2+2)dxletconsiderφ(z)=z2(z2+1)(z2+2)thepolesofφarei,i,i2,i2andallaresimples+φ(z)dz=2iπ(Res(φ,i)+Res(φ,i2))φ(z)=z2(zi)(z+i)(zi2)(z+i2)Res(φ,i)=limzi(zi)φ(z)=1(2i)(1)=12iRes(φ,i2)=limzi2(zi2)φ(z)=2(1)(2i2)=1i2+φ(z)dz=2iπ(12i+1i2)=π+2π2=π+π2=(21)π.

Commented by abdo imad last updated on 26/Mar/18

I = (1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz = (π/2)((√2)  −1) .

I=12+φ(z)dz=π2(21).

Answered by sma3l2996 last updated on 25/Mar/18

I=∫_0 ^1 arctan((√(1−x^2 )))dx  by parts  u=arctan((√(1−x^2 )))⇒u′=((−x)/((2−x^2 )(√(1−x^2 ))))  v′=1⇒v=x  I=[xarctan((√(1−x^2 )))]_0 ^1 +∫_0 ^1 (x^2 /((2−x^2 )(√(1−x^2 ))))dx  =−∫_0 ^1 ((2−x^2 −2)/((2−x^2 )(√(1−x^2 ))))dx=2∫_0 ^1 (dx/((2−x^2 )(√(1−x^2 ))))−∫_0 ^1 (dx/(√(1−x^2 )))  let  x=sint⇒dx=costdt  I=2∫_0 ^(π/2) (dt/(2−sin^2 t))−(π/2)  u=tant⇒dt=(du/(1+u^2 ))  2−sin^2 t=2−((tan^2 t)/(1+tan^2 t))=((2+tan^2 t)/(1+tan^2 t))=((2+u^2 )/(1+u^2 ))  I=2∫_0 ^∞ (du/(2+u^2 ))−(π/2)=∫_0 ^∞ (du/(1+((u/(√2)))^2 ))−(π/2)=(√2)[arctan((u/(√2)))]_0 ^∞ −(π/2)  I=((π(√2))/2)−(π/2)=(π/2)((√2)−1)

I=01arctan(1x2)dxbypartsu=arctan(1x2)u=x(2x2)1x2v=1v=xI=[xarctan(1x2)]01+01x2(2x2)1x2dx=012x22(2x2)1x2dx=201dx(2x2)1x201dx1x2letx=sintdx=costdtI=20π/2dt2sin2tπ2u=tantdt=du1+u22sin2t=2tan2t1+tan2t=2+tan2t1+tan2t=2+u21+u2I=20du2+u2π2=0du1+(u2)2π2=2[arctan(u2)]0π2I=π22π2=π2(21)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com