Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38202 by prof Abdo imad last updated on 22/Jun/18

find the value of  ∫_0 ^1  e^(−x) (√(1−e^(−2x) ))dx

findthevalueof01ex1e2xdx

Commented by math khazana by abdo last updated on 23/Jun/18

changement e^(−x) =t give x=−ln(t) and  I =− ∫_1 ^e^(−1)  t(√(1−t^2 )) (dt/t)  = ∫_(1/e) ^1 (√(1−t^2 ))dt  after we use the chang.t=sinθ  I = ∫_(arcsin(e^(−1) )) ^(π/2) cosθ.cossθ dθ  = ∫_(arcsin(e^(−1) )) ^(π/2)  ((1+cos(2θ))/2)dθ  =(1/2)( (π/2) −arcsin(e^(−1) )) +(1/4)[sin(2θ)]_(arcsin(e^(−1) )) ^(π/2)   =(π/4) −(1/2)arcsin(e^(−1) )−(1/4)sin(2arcsin(e^(−1) )).

changementex=tgivex=ln(t)andI=1e1t1t2dtt=1e11t2dtafterweusethechang.t=sinθI=arcsin(e1)π2cosθ.cossθdθ=arcsin(e1)π21+cos(2θ)2dθ=12(π2arcsin(e1))+14[sin(2θ)]arcsin(e1)π2=π412arcsin(e1)14sin(2arcsin(e1)).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com