All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38202 by prof Abdo imad last updated on 22/Jun/18
findthevalueof∫01e−x1−e−2xdx
Commented by math khazana by abdo last updated on 23/Jun/18
changemente−x=tgivex=−ln(t)andI=−∫1e−1t1−t2dtt=∫1e11−t2dtafterweusethechang.t=sinθI=∫arcsin(e−1)π2cosθ.cossθdθ=∫arcsin(e−1)π21+cos(2θ)2dθ=12(π2−arcsin(e−1))+14[sin(2θ)]arcsin(e−1)π2=π4−12arcsin(e−1)−14sin(2arcsin(e−1)).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com