All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18
findthevalueof∫01ln(t)(1+t)2dt
Commented by maxmathsup by imad last updated on 16/Jul/18
letI=∫01ln(t)(1+t)2dtletintegratebypartsu′=1(1+t)2andv=ln(t)I=[(1−11+t)ln(t)]01−∫01(1−11+t)dtt=−∫01dt1+t=−[ln∣1+t∣]01=−ln(2)I=−ln(2).
Answered by ajfour last updated on 16/Jul/18
I=∫01lnt(1+t)2=−lnt(1+t)∣01+∫01dtt(1+t)=limt→0[(lnt1+t)−ln(t1+t)]−ln2=limt→0[ln(1+t)t1+tt]−ln2=limt→0[ln(1+t)tt]−ln2=limlnt→0(1+t)+limt→0lnt(1/t)−ln2=0+limt→0(1/t−1/t2)−ln2I=−ln2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com