All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 31969 by abdo imad last updated on 17/Mar/18
findthevalueof∫0∞(1+t21+t4)arctantdt.
Commented by abdo imad last updated on 19/Mar/18
letputI=∫0∞arctant1+t4dt.ch.x=1tgiveI=∫0∞π2−arctant1+1t4dtt2=∫0∞π2−arctantt2+1t2dt=∫0∞t2(π2−arctant)1+t4dt=π2∫0∞t21+t4dt−∫0∞t2arctant1+t2dt⇒∫0∞(1+t21+t4)arctantdt=π2∫0∞t21+t4dt.ch.t4=ugive∫0∞t21+t4dt=∫0∞(u14)21+u14u14−1du=14∫0∞u12+14−11+udu=14∫0∞u34−11+udu=14πsin(3π4)=π4112=π24⇒∫0∞(1+t21+t4)arctantdt=π2π24=π282.Ihaveusedtheresult∫0∞ta−11+tdt=πsin(πa)with0<a<1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com