All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67526 by mathmax by abdo last updated on 28/Aug/19
findthevalueof∫02πdx3+2sinx+cosx
Commented by mathmax by abdo last updated on 31/Aug/19
letI=∫02πdx3+2sinx+cosx⇒I=∫0πdx3+2sinx+cosx+∫π2πdx3+2sinx+cosx=H+KH=tan(x2)=t∫0∞13+22t1+t2+1−t21+t22dt1+t2=∫0∞2dt3+3t2+4t+1−t2=∫0∞2dt2t2+4t+4=∫0∞dtt2+2t+2Δ′=1−2=−1<0⇒H=∫0∞dtt2+2t+1+1=∫0∞dt(t+1)2+1=t+1=α∫1+∞dα1+α2=[arctan(α)]1+∞=π2−π4=π4K=x=π+t∫0πdt3−2sint−cost=tan(t2)=u∫0∞2du(1+u2)(3−22u1+u2−1−u21+u2)=∫0∞2du3+3u2−4u−1+u2=∫0∞2du4u2−4u+2=∫0∞du2u2−2u+1=12∫0∞duu2−u+12=12∫0∞du(u−12)2+34+12=12∫0∞du(u−12)2+54=u−12=52α12×45∫−15+∞11+u252dα=15[arctanα]−15+∞=15{π2+arctan(15)}⇒I=π4+π25+15arctan(15).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com