Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67526 by mathmax by abdo last updated on 28/Aug/19

find the value of ∫_0 ^(2π)    (dx/(3+2sinx +cosx))

findthevalueof02πdx3+2sinx+cosx

Commented by mathmax by abdo last updated on 31/Aug/19

let I =∫_0 ^(2π)   (dx/(3+2sinx +cosx)) ⇒I =∫_0 ^π  (dx/(3+2sinx +cosx)) +∫_π ^(2π)  (dx/(3+2sinx +cosx))  =H +K  H =_(tan((x/2))=t)    ∫_0 ^∞      (1/(3+2((2t)/(1+t^2 )) +((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_0 ^∞   ((2dt)/(3+3t^2 +4t +1−t^2 )) =∫_0 ^∞   ((2dt)/(2t^2 +4t+4)) =∫_0 ^∞   (dt/(t^2  +2t +2))  Δ^′ =1−2 =−1<0 ⇒  H =∫_0 ^∞    (dt/(t^2  +2t+1 +1)) =∫_0 ^∞   (dt/((t+1)^2 +1)) =_(t+1 =α)    ∫_1 ^(+∞)  (dα/(1+α^2 ))  =[arctan(α)]_1 ^(+∞)  =(π/2)−(π/4) =(π/4)  K =_(x =π +t)    ∫_0 ^π      (dt/(3−2sint−cost)) =_(tan((t/2))=u)    ∫_0 ^∞     ((2du)/((1+u^2 )(3−2((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 )))))  =∫_0 ^∞     ((2du)/(3+3u^2 −4u−1+u^2 )) =∫_0 ^∞    ((2du)/(4u^2 −4u+2))  =∫_0 ^∞     (du/(2u^2 −2u +1)) =(1/2)∫_0 ^∞   (du/(u^2 −u +(1/2))) =(1/2)∫_0 ^∞    (du/((u−(1/2))^2 +(3/4)+(1/2)))  =(1/2)∫_0 ^∞    (du/((u−(1/2))^2 +(5/4))) =_(u−(1/2)=((√5)/2)α)    (1/2)×(4/5)∫_(−(1/(√5))) ^(+∞)     (1/(1+u^2 ))((√5)/2)dα  =(1/(√5))[arctanα]_(−(1/(√5))) ^(+∞)  =(1/(√5)){(π/2) +arctan((1/(√5)))} ⇒  I =(π/4) +(π/(2(√5))) +(1/(√5)) arctan((1/(√5))).

letI=02πdx3+2sinx+cosxI=0πdx3+2sinx+cosx+π2πdx3+2sinx+cosx=H+KH=tan(x2)=t013+22t1+t2+1t21+t22dt1+t2=02dt3+3t2+4t+1t2=02dt2t2+4t+4=0dtt2+2t+2Δ=12=1<0H=0dtt2+2t+1+1=0dt(t+1)2+1=t+1=α1+dα1+α2=[arctan(α)]1+=π2π4=π4K=x=π+t0πdt32sintcost=tan(t2)=u02du(1+u2)(322u1+u21u21+u2)=02du3+3u24u1+u2=02du4u24u+2=0du2u22u+1=120duu2u+12=120du(u12)2+34+12=120du(u12)2+54=u12=52α12×4515+11+u252dα=15[arctanα]15+=15{π2+arctan(15)}I=π4+π25+15arctan(15).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com