All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27619 by abdo imad last updated on 11/Jan/18
findthevalueof∫0∞cos(2x)(1+x2)2dx.
Commented by abdo imad last updated on 12/Jan/18
letputI=∫0∞cos(2x)(1+x2)2dxI=12∫Rcos(2x)(1+x2)2dx=12Re(∫Rei2x(1+x2)2dx)letintroducethecomplexfunctionf(z)=ei(2z)(1+z2)2wehavef(z)=ei(2z)(z−i)2(z+i)2sothepolesoffareiand−i(doublepoles)∫Rf(z)dz=2iπRes(f,i)(wedonttake−ibecauseIm(−i)<0)Re(f,i)=limz−>i1(2−1)!ddz((z−i)2f(z))=limz−>iddz(ei(2z)(z+i)2)==limz−>i2iei(2z)(z+i)2−2(z+i)ei(2z)(z+i)4=limz−>i2iei(2z)(z+i)−2ei(2z)(z+i)3=2ie−2(2i)−2e−2(2i)3=−4e−2−2e−2−8i=6e−28i=3e−24i∫Rf(z)dz=2iπ.3e−24i=3π2e−2I=12∫Rf(z)dz=3π4e−2=3π4e2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com