Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26360 by abdo imad last updated on 24/Dec/17

  find the value of    ∫_0 ^( ∝ )  ((cos(αx))/(1+x^2 )) dx  .

findthevalueof0cos(αx)1+x2dx.

Commented by abdo imad last updated on 25/Dec/17

let put I=  ∫_0 ^∞  ((cos(αx))/(1+x^2 ))dx⇒      2I = ∫_R   ((cos(αx))/(1+x^2 ))dx  = Re(∫_R    (e^(iαx) /(1+x^2 ))dx)    and by residus therem  ∫_R  f(z)dz  =2iπ Res(f,i)      /f(z) = (e^(iαz) /(1+z^2 ))  Re(f,i)  = lim_(z−>i) (z−i)f(z)  =  (e^(−α) /(2i))    ∫_R f(z)dz  = 2iπ (e^(−α) /(2i))  =π e^(−α)    ⇒    ∫_0 ^∞   ((cos(αx))/(1+x^2 )) dx= (π/2) e^(−α)      .(look that  Im(  ∫_R   (e^(iαx) /(1+x^2 ))dx)=0)

letputI=0cos(αx)1+x2dx2I=Rcos(αx)1+x2dx=Re(Reiαx1+x2dx)andbyresidustheremRf(z)dz=2iπRes(f,i)/f(z)=eiαz1+z2Re(f,i)=limz>i(zi)f(z)=eα2iRf(z)dz=2iπeα2i=πeα0cos(αx)1+x2dx=π2eα.(lookthatIm(Reiαx1+x2dx)=0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com