Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33128 by prof Abdo imad last updated on 10/Apr/18

find the value of  ∫_0 ^∞        (dx/((1+x^2 )( 1+x^4 ))) .

findthevalueof0dx(1+x2)(1+x4).

Commented by prof Abdo imad last updated on 13/Apr/18

let put I  = ∫_0 ^∞      (dx/((1+x^2 )(1+x^4 )))  we have  2I = ∫_(−∞) ^(+∞)      (dx/((1+x^2 )(1+x^4 ))) .let introduce the  complex function ϕ(z) = (1/((1+z^2 )(1+z^4 )))  ϕ(z) =  (1/((z−i)(z+i)(z^2  −i)(z^2  −(−i))))  =  (1/((z−i)(z+i)(z −(√i))(z+(√i))(z −(√(−i)))(z +(√(−i)))))  (√i) =e^(i(π/4))     (√(−i)) =e^(−i(π/4))   so the poles of?ϕ are   i,−i,e^(i(π/4))  , −e^(i(π/4))  , e^(−i(π/4))  , −e^(−i(π/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ(  Res(ϕ,i) +Res(ϕ,e^(i(π/4)) ) +Res(ϕ,−e^(−i(π/4)) )  let p(z) =(1+z^2 )(1+z^4 )  p(z)=1+z^4   +z^2  +z^6  ⇒p^′ (z) = 2z  +4z^3  +6z^5   Res(ϕ,i) =(1/(p^′ (i))) =  (1/(2i +4i^3  +6i^5 )) = (1/(2i−4i +6i))  = (1/(4i))  Res(ϕ, e^(i(π/4)) )  =  (1/(p^′ ( e^(i(π/4)) ))) =  (1/(2 e^(i(π/4))   +4 e^(i((3π)/4))   +6 e^(i((5π)/4)) ))  but  2 e^(i(π/4))   +4  e^(i((3π)/4))   +6 e^(i((5π)/4))   = 2 e^(i(π/4))   −4 e^(−i(π/4))  −6 e^(i(π/4))  = −4( e^(i(π/4))  +e^(−i(π/4)) )  =−4 . 2.((√2)/2) =−4(√2)  Res(ϕ,−e^(−i(π/4)) )  = (1/(p^′ ( −e^(−i(π/4)) )))  =   (1/(−2 e^(−i(π/4))  −4 e^(−i((3π)/4))    −6 e^(−i((5π)/4)) ))  =  ((−1)/(2 e^(−i(π/4))   +4 e^(−i((3π)/4))   +6 e^(−i((5π)/4)) )) = ((−1)/(2 e^(−i(π/4))   −4 e^(i(π/4))  −6 e^(−i(π/4)) ))  =  ((−1)/(−4( e^(i(π/4))   +e^(−i(π/4)) ))) =  (1/(4 .2.((√2)/2))) = (1/(4(√2))) ⇒  2I  =2iπ(  (1/(4i))  −(1/(4(√2)))  + (1/(4(√2))) ) = (π/2)  ⇒  I = (π/4) .

letputI=0dx(1+x2)(1+x4)wehave2I=+dx(1+x2)(1+x4).letintroducethecomplexfunctionφ(z)=1(1+z2)(1+z4)φ(z)=1(zi)(z+i)(z2i)(z2(i))=1(zi)(z+i)(zi)(z+i)(zi)(z+i)i=eiπ4i=eiπ4sothepolesof?φarei,i,eiπ4,eiπ4,eiπ4,eiπ4+φ(z)dz=2iπ(Res(φ,i)+Res(φ,eiπ4)+Res(φ,eiπ4)letp(z)=(1+z2)(1+z4)p(z)=1+z4+z2+z6p(z)=2z+4z3+6z5Res(φ,i)=1p(i)=12i+4i3+6i5=12i4i+6i=14iRes(φ,eiπ4)=1p(eiπ4)=12eiπ4+4ei3π4+6ei5π4but2eiπ4+4ei3π4+6ei5π4=2eiπ44eiπ46eiπ4=4(eiπ4+eiπ4)=4.2.22=42Res(φ,eiπ4)=1p(eiπ4)=12eiπ44ei3π46ei5π4=12eiπ4+4ei3π4+6ei5π4=12eiπ44eiπ46eiπ4=14(eiπ4+eiπ4)=14.2.22=1422I=2iπ(14i142+142)=π2I=π4.

Commented by prof Abdo imad last updated on 13/Apr/18

another method  the ch.x =(1/t) give   I = −∫_0 ^∞      (1/((1+(1/t^2 ))(1+(1/t^4 )))) ((−dt)/t^2 )  = ∫_0 ^∞      (( t^4 dt)/((1+t^2 )(1+t^4 ))) =∫_0 ^∞   ((1+t^4  −1)/((1+t^2 )(1+t^4 )))dt  = ∫_0 ^∞    (dt/(1+t^2 ))  −∫_0 ^∞     (dt/((1+t^2 )(1+t^4 ))) =(π/2) −I⇒  2I =(π/2) ⇒ I = (π/4)  ★ I=(π/4) ★

anothermethodthech.x=1tgiveI=01(1+1t2)(1+1t4)dtt2=0t4dt(1+t2)(1+t4)=01+t41(1+t2)(1+t4)dt=0dt1+t20dt(1+t2)(1+t4)=π2I2I=π2I=π4I=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com