Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65768 by mathmax by abdo last updated on 03/Aug/19

find the value of  ∫_0 ^∞    (dx/(x^2 −2(cosθ)x +1))

findthevalueof0dxx22(cosθ)x+1

Commented by mathmax by abdo last updated on 04/Aug/19

let I =∫_0 ^∞    (dx/(x^2 −2xcosθ +1)) ⇒I =∫_0 ^∞   (dx/(x^2 −2xcosθ +cos^2 θ +sin^2 θ))  =∫_0 ^∞     (dx/((x−cosθ)^2  +sin^2 θ)) =_(x−cosθ =∣sinθ∣u)     ∫_(−((cosθ)/(∣sinθ∣))) ^(+∞)   ((∣sinθ∣du)/(sin^2 θ(1+u^2 )))  =(1/(∣sinθ∣))[arctanu]_(−((cosθ)/(∣sinθ∣))) ^(+∞)  =(1/(∣sinθ∣)){(π/2) +arctan(((cosθ)/(∣sinθ∣)))}  case 1  sinθ>0 ⇒I =(1/(sinθ)){(π/2) +arctan((1/(tanθ)))}  =(1/(sinθ)){ (π/2) +^− (π/2) −θ}  case 2  sinθ<0 ⇒ I =−(1/(sinθ)){(π/2) −arctan(((cosθ)/(snθ)))}  =(1/(sinθ)){−(π/2) +^− (π/2) −θ}

letI=0dxx22xcosθ+1I=0dxx22xcosθ+cos2θ+sin2θ=0dx(xcosθ)2+sin2θ=xcosθ=∣sinθucosθsinθ+sinθdusin2θ(1+u2)=1sinθ[arctanu]cosθsinθ+=1sinθ{π2+arctan(cosθsinθ)}case1sinθ>0I=1sinθ{π2+arctan(1tanθ)}=1sinθ{π2+π2θ}case2sinθ<0I=1sinθ{π2arctan(cosθsnθ)}=1sinθ{π2+π2θ}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com