Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65769 by mathmax by abdo last updated on 03/Aug/19

find the value of ∫_0 ^∞    (dx/((x^2 −2xcosθ +1)^2 ))

findthevalueof0dx(x22xcosθ+1)2

Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19

Lets named I the value we are searching.And f(x)=(1/((x^2 −2xcosθ+1)^2 ))  x^2 −2xcosθ+1=(x−e^(iθ) )(x−e^(−iθ) )  Im(e^(iθ) )=sinθ >0 ⇒θ∈D=∪_(k=0) ]2kπ   (2k+1)π[  et Im(e^(−iθ) )<0  Im(e^(−iθ) )=−sinθ >0 ⇒ θ∉ D  if θ∈D we will have sinθ>0  So I=2iπRes(f . e^(iθ) )  And Res(f. e^(iθ) )= lim_(z−>e^(iθ) )  (1/((2−1)!))[ (1/((z−e^(−iθ) )^2 ))]^((1)) =((−2)/((e^(iθ) −e^(−iθ) )^3 )) =((−i)/(4(sinθ)^3 ))  Then  I=(π/(2sin^3 (θ)))  if θ∉D   then sinθ<0  so I= 2iπRes(f.  e^(−iθ) )  and Res(f.  e^(−iθ) )=lim_(z−>e^(−iθ) )  (1/((2−1)!))[(1/((z−e^(iθ) )^2 ))]^((1)) =((−2)/((e^(−iθ) −e^(iθ) )^3 ))=(i/(4sin^3 θ))  then I=((−π)/(2sin^3 (θ)))  Finally we can conclude that I=(π/(2∣sinθ∣^3 ))

LetsnamedIthevaluewearesearching.Andf(x)=1(x22xcosθ+1)2x22xcosθ+1=(xeiθ)(xeiθ)Im(eiθ)=sinθ>0θD=k=0]2kπ(2k+1)π[etIm(eiθ)<0Im(eiθ)=sinθ>0θDifθDwewillhavesinθ>0SoI=2iπRes(f.eiθ)AndRes(f.eiθ)=limz>eiθ1(21)![1(zeiθ)2](1)=2(eiθeiθ)3=i4(sinθ)3ThenI=π2sin3(θ)ifθDthensinθ<0soI=2iπRes(f.eiθ)andRes(f.eiθ)=limz>eiθ1(21)![1(zeiθ)2](1)=2(eiθeiθ)3=i4sin3θthenI=π2sin3(θ)FinallywecanconcludethatI=π2sinθ3

Commented by mathmax by abdo last updated on 04/Aug/19

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 04/Aug/19

let f(a) =∫_0 ^∞     (dx/(x^2 −2xcosθ +a))     with a>cos^2 θ  we have f^′ (a) =−∫_0 ^∞    (dx/((x^2 −2xcosθ +a)^2 )) ⇒  ∫_0 ^∞  (dx/((x^2 −2xcosθ +1)^2 )) =−f^′ (1)  let first find f(a)  f(a) =∫_0 ^∞   (dx/(x^2  −2xcosθ +cos^2 θ +a−cos^2 θ))  =∫_0 ^∞    (dx/((x−cosθ)^2  +a−cos^2 θ)) changement x−cosθ =(√(a−cos^2 θ))u  give f(a) =∫_0 ^∞ (((√(a−cos^2 θ))du)/((a−cos^2 θ)(1+u^2 ))) =(1/(√(a−cos^2 θ)))(π/2) =(π/(2(√(a−cos^2 θ))))  ⇒f^′ (a) =(π/2)(a−cos^2 θ)^(−(1/2)) }^((1)) =−(π/4)(a−cos^2 θ)^(−(3/2))   =−(π/(4(a−cos^2 θ)(√(a−cos^2 θ)))) ⇒f^′ (1) =(π/(4(1−cos^2 θ)(√(1−cos^2 θ))))  =(π/(4sin^2 θ∣sinθ∣)) ⇒  ∫_0 ^∞      (dx/((x^2 −2xcosθ +1)^2 )) =(π/(4∣sinθ∣^3 ))

letf(a)=0dxx22xcosθ+awitha>cos2θwehavef(a)=0dx(x22xcosθ+a)20dx(x22xcosθ+1)2=f(1)letfirstfindf(a)f(a)=0dxx22xcosθ+cos2θ+acos2θ=0dx(xcosθ)2+acos2θchangementxcosθ=acos2θugivef(a)=0acos2θdu(acos2θ)(1+u2)=1acos2θπ2=π2acos2θf(a)=π2(acos2θ)12}(1)=π4(acos2θ)32=π4(acos2θ)acos2θf(1)=π4(1cos2θ)1cos2θ=π4sin2θsinθ0dx(x22xcosθ+1)2=π4sinθ3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com