All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27802 by abdo imad last updated on 15/Jan/18
findthevalueof∫0∞e−2x2(3+x2)2dx.
Commented by abdo imad last updated on 17/Jan/18
letputI=∫0∞e−2x2(3+x2)2dxI=12∫−∝+∝e−2x2(3+x2)2dxletintroducethecomplexfunctionf(z)=e−2z2(3+z2)2.polesoff?f(z)=e−2z2(z−i3)2(z+i3)2sofhaveadoublepolesi3and−i3∫−∝+∝f(z)dz=2iπRes(f,i3)Res(f,i3)=limz→i31(2−1)!((z−i3)2f(z))′limz→i3(e−2z2.(z+i3)−2),=limz→i3(−4ze−z2(z+i3)−2−2e−2z2(z+i3)−3)=−4(i3)e3(2i3)−2−2e6(2i3)−3=−4i3e3−12−2e6−24i3=i3e33+e612i3.∫−∝+∝f(z)dz=2iπ(i3e33+e612i3)=−23e33+e663finallyI=12∫Rf(z)dz=−e333+e6123.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com