All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28694 by abdo imad last updated on 29/Jan/18
findthevalueof∫0∞e−tx2cosxdxwitht>0.
Commented by abdo imad last updated on 29/Jan/18
letputI=∫0∞e−tx2cosxdxI=12∫−∞+∞e−tx2+ixdxbecause∫−∞+∞e−tx2sinxdx=0but∫−∞+∞e−((tx)2−2txi2t+(i2t)2−(i2t)2)dx=∫−∞+∞e−(tx−i2t)2−14tdx(ch.tx−i2t=u)=e−14t∫−∞+∞e−u2dut=πte−14t(∫−∞+∞e−u2du=π)soI=π2te−14t.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com