All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26575 by abdo imad last updated on 26/Dec/17
findthevalueof∫0∞e−[x]sinxdxinthat[x]=E(x)
Commented by abdo imad last updated on 29/Dec/17
letputI=∫0∝e−[x]sinxdxIn=∫0ne−[x]sinxdxwehaveI=limn−>∝InbutIn=∑k=0n−1∫kk+1e−[x]sinxdx=∑k=0k=n−1e−k∫kk+1sinxdxIn=∑k=0k=n−1e−k[−cosx]kk+1=∑k=0k=n−1e−k(cosk−cos(k+1))=∑k=0k=n−1e−kcosk−∑k=0k=n−1e−kcos(k+1)=∑k=0k=n−1e−kcosk−∑k=1ne−(k−1)cosk=(1−e)∑k=0n−1e−kcoskbut∑k=0n−1e−kcosk=Re(∑k=0n−1e(−1+i)k)and∑k=0k=n−1e(−1+i)k=1−e(−1+i)n1−e−1+ilimn−>∝In=(1−e)∑k=0∝e−kcosk=(1−e)Re(11−e−1+i)but11−e−1+i=11−e−1(cos(1)+isin(1)=1−e−1cos(1)+ie−1sin(1)(1−e−1cos(1))2+e−2sin2(1)⇒limn−>∝In=1−e−1cos(1)(1−e−1cos(1))2+e−2sin2(1)=∫0∞e−[x]sinxdx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com